summaryrefslogtreecommitdiff
path: root/sample_notebooks/UmangAgarwal/Sample_Notebook.ipynb
blob: 34fb4a40168b8941425c53ccd01ad4df3c2aef7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
Sample Notebook - Heat and Mass Transfer by R.K. Rajput : Chapter 1 - Basic Concepts
author: Umang Agarwal


# Example 1.1  Page 16-17

L=.045;   		 			#[m] - Thickness of conducting wall
delT = 350 - 50;  		      #[C] - Temperature Difference across the Wall
k=370;    					#[W/m.C] - Thermal Conductivity of Wall Material
#calculations
#Using Fourier's Law eq 1.1
q = k*delT/(L*10**6);    			#[MW/m^2] - Heat Flux
#results
print '%s %.2f %s' %("\n \n Rate of Heat Transfer per unit area =",q," W");
#END

# Example 1.2  Page 17

L = .15;   		 			#[m] - Thickness of conducting wall
delT = 150 - 45;  		      #[C] - Temperature Difference across the Wall
A = 4.5;                           #[m^2] - Wall Area
k=9.35;    					#[W/m.C] - Thermal Conductivity of Wall Material
#calculations
#Using Fourier's Law eq 1.1
Q = k*A*delT/L;    			#[W] - Heat Transfer
#Temperature gradient using Fourier's Law
TG = - Q/(k*A);                   #[C/m] - Temperature Gradient
#results
print '%s %.2f %s' %("\n \n Rate of Heat Transfer per unit area =",Q," W");
print '%s %.2f %s' %("\n \n The Temperature Gradient in the flow direction =",TG," C/m");
#END

# Example 1.3  Page 17-18

x = .0825;   		 			#[m] - Thickness of side wall of the conducting oven
delT = 175 - 75;  		      #[C] - Temperature Difference across the Wall
k=0.044;   					#[W/m.C] - Thermal Conductivity of Wall Insulation
Q = 40.5;                          #[W] - Energy dissipitated by the electric coil withn the oven  
#calculations
#Using Fourier's Law eq 1.1
A = (Q*x)/(k*delT);    		#[m^2] - Area of wall
#results
print '%s %.2f %s' %("\n \n Area of the wall =",A," m^2");
#END

# Example 1.4  Page 18-19

delT = 300-20;  		            #[C] - Temperature Difference across the Wall
h = 20;    					#[W/m^2.C] - Convective Heat Transfer Coefficient
A = 1*1.5;                           #[m^2] - Wall Area
#calculations
#Using Newton's Law of cooling eq 1.6
Q = h*A*delT;        			#[W] - Heat Transfer
#results
print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Q," W");
#END

# Example 1.5  Page 19

L=.15;   		 			#[m] - Length of conducting wire
d = 0.0015;                       #[m] - Diameter of conducting wire
A = 22*d*L/7;                     #[m^2] - Surface Area exposed to Convection
delT = 120 - 100;  		      #[C] - Temperature Difference across the Wire
h = 4500;    					#[W/m^2.C] - Convective Heat Transfer Coefficient
print 'Electric Power to be supplied = Convective Heat loss';
#calculations
#Using Newton's Law of cooling eq 1.6
Q = h*A*delT;        			#[W] - Heat Transfer
Q = round(Q,1);
#results
print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Q," W");
#END

# Example 1.6  Page 20-21

T1 = 300 + 273;  		                  #[K] - Temperature of 1st surface
T2 = 40 + 273;                           #[K] - Temperature of 2nd surface
A = 1.5;                                 #[m^2] - Surface Area
F = 0.52;    				       #[dimensionless] - The value of Factor due geometric location and emissivity
sigma = 5.67*(10**-8)                    #(W/(m^2 * K^4)) - Stephen - Boltzmann Constant
#calculations
#Using Stephen-Boltzmann Law eq 1.9
Q = F*sigma*A*(T1**4 - T2**4)   	    #[W] - Heat Transfer
#Equivalent Thermal Resistance using eq 1.10
Rth = (T1-T2)/Q;                     #[C/W] - Equivalent Thermal Resistance
#Equivalent convectoin coefficient using h*A*(T1-T2) = Q
h = Q/(A*(T1-T2));                   #[W/(m^2*C)] - Equivalent Convection Coefficient
#results
print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Q," W");
print '%s %.2f %s' %("\n The equivalent thermal resistance =",Rth," C/W");
print '%s %.2f %s' %("\n The equivalent convection coefficient =",h," W/(m^2 * C)");
#END

# Example 1.7  Page 21-22

L = 0.025;                                #[m] - Thickness of plate
A = 0.6*0.9;                              #[m^2] - Area of plate   
Ts = 310;  		                         #[C] - Surface Temperature of plate
Tf = 15;                                  #[C] - Temperature of fluid(air)
h = 22;    					       #[W/m^2.C] - Convective Heat Transfer Coefficient
Qr = 250;    				       #[W] - Heat lost from the plate due to radiation
k = 45;    					       #[W/m.C] - Thermal Conductivity of Plate
#calculations
# In this problem, heat conducted by the plate is removed by a combination of convection and radiation
# Heat conducted through the plate = Convection Heat losses + Radiation Losses
# If Ti is the internal plate temperature, then heat conducted = k*A*(Ts-Ti)/L
Qc = h*A*(Ts-Tf);                        #[W] - Convection Heat Loss
Ti = Ts + L*(Qc + Qr)/(A*k);   	       #[C] - Inside plate Temperature
#results
print '%s %.2f %s' %("\n \n Rate of Heat Transfer =",Ti," C");
#END

# Example 1.8  Page 22

Ts = 250;  		                         #[C] - Surface Temperature
Tsurr = 110;                              #[C] - Temperature of surroundings
h = 75;    					       #[W/m^2.C] - Convective Heat Transfer Coefficient
F = 1;    				             #[dimensionless] - The value of Factor due geometric location and emissivity
sigma = 5.67*(10**-8)                    #(W/(m^2 * K^4)) - Stephen - Boltzmann Constant
k = 10;    					       #[W/m.C] - Thermal Conductivity of Solid
#calculations
# Heat conducted through the plate = Convection Heat losses + Radiation Losses
qr = F*sigma*((Ts+273)**4-(Tsurr+273)**4)    #[W/m^2] - #[W] - Heat lost per unit area from the plate due to radiation
qc = h*(Ts-Tsurr);                           #[W/m^2] - Convection Heat Loss per unit area
TG = -(qc+qr)/k;   	                      #[C/m] - Temperature Gradient
#results
print '%s %.2f %s' %("\n \n The temperature Gradient =",TG," C/m");
#END