1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 1: Tension Comprssion and Shear"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.1, page no. 9"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\"\"\"\n",
"Find compressive stress and strain in the post\n",
"\"\"\"\n",
"\n",
"import math\n",
"\n",
"#initialisation\n",
"\n",
"d_1 = 4 # inner diameter (inch)\n",
"d_2 = 4.5 #outer diameter (inch)\n",
"P = 26000 # pressure in pound\n",
"L = 16 # Length of cylinder (inch)\n",
"my_del = 0.012 # shortening of post (inch)\n",
"\n",
"#calculation\n",
"A = (math.pi/4)*((d_2**2)-(d_1**2)) #Area (inch^2)\n",
"s = P/A # stress\n",
"\n",
"print \"compressive stress in the post is \", round(s), \"psi\"\n",
"\n",
"e = my_del/L # strain\n",
"\n",
"print \"compressive strain in the post is %e\" %e"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"compressive stress in the post is 7789.0 psi\n",
"compressive strain in the post is 7.500000e-04\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.2, page no. 10"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\"\"\"\n",
"formula for maximum stress & calculating maximum stress\n",
"\"\"\"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"W = 1500 # weight (Newton)\n",
"d = 0.008 #diameter(meter) \n",
"g = 77000 # Weight density of steel\n",
"L = 40 # Length of bar (m)\n",
"\n",
"#calculation\n",
"\n",
"A = (math.pi/4)*(d**2) # Area\n",
"s_max = (1500/A) + (g*L) # maximum stress\n",
"\n",
"#result\n",
"print \"Therefore the maximum stress in the rod is \", round(s_max,1), \"Pa\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Therefore the maximum stress in the rod is 32921551.8 Pa\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.3. page no. 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\"\"\"\n",
"calculating change in lenght of pipe, strain in pipe, increase in diameter & increase in wall thickness\n",
"\"\"\"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"d1 = 4.5 # diameter in inch\n",
"d2 = 6 # diameter in inch\n",
"A = (math.pi/4)*((d2**2)-(d1**2)) # Area\n",
"P = 140 # pressure in K\n",
"s = -P/A # stress (compression)\n",
"E = 30000 # young's modulus in Ksi\n",
"e = s/E # strain\n",
"\n",
"#calculation\n",
"\n",
"# Part (a)\n",
"my_del = e*4*12 # del = e*L \n",
"print \"Change in length of the pipe is\", round(my_del,3), \"inch\"\n",
"\n",
"# Part (b)\n",
"v = 0.30 # Poissio's ratio\n",
"e_ = -(v*e)\n",
"print \"Lateral strain in the pipe is %e\" %e_\n",
"\n",
"# Part (c)\n",
"del_d2 = e_*d2 \n",
"del_d1 = e_*d1\n",
"print \"Increase in the inner diameter is \", round(del_d1,6), \"inch\"\n",
"\n",
"# Part (d)\n",
"t = 0.75\n",
"del_t = e_*t\n",
"print \"Increase in the wall thicness is %f\" %del_t, \"inch\"\n",
"del_t1 = (del_d2-del_d1)/2 \n",
"print \"del_t1 = del_t\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Change in length of the pipe is -0.018 inch\n",
"Lateral strain in the pipe is 1.131768e-04\n",
"Increase in the inner diameter is 0.000509 inch\n",
"Increase in the wall thicness is 0.000085 inch\n",
"del_t1 = del_t\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.4, page no. 35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\"\"\"\n",
"calculate average shear stress and compressive stress\n",
"\"\"\"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"d = 0.02 # diameter in m\n",
"t = 0.008 # thickness in m\n",
"A = math.pi*d*t # shear area\n",
"P = 110000 # prassure in Newton\n",
"\n",
"#calculation\n",
"A1 = (math.pi/4)*(d**2) # Punch area\n",
"t_aver = P/A # Average shear stress \n",
"\n",
"\n",
"print \"Average shear stress in the plate is \", t_aver, \"Pa\"\n",
"s_c = P/A1 # compressive stress\n",
"print \"Average compressive stress in the plate is \", s_c, \"Pa\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average shear stress in the plate is 218838046.751 Pa\n",
"Average compressive stress in the plate is 350140874.802 Pa\n"
]
}
],
"prompt_number": 37
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Eample 1.5, page no. 36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\"\"\"\n",
"calculate bearing stress, shear stress in pin,\n",
"bearing stress between pin and gussets,\n",
"shear stress in anchor bolts\n",
"\"\"\"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"\n",
"P = 12.0 # Pressure in K\n",
"t = 0.375 # thickness of wall in inch\n",
"theta = 40.0 # angle in degree\n",
"d_pin = 0.75 # diameter of pin in inch\n",
"t_G = 0.625 # thickness of gusset in inch\n",
"t_B = 0.375 #thickness of base plate in inch\n",
"d_b = 0.50 # diameter of bolt in inch\n",
"\n",
"#calculation\n",
"\n",
"#Part (a)\n",
"s_b1 = P/(2*t*d_pin) # bearing stress\n",
"print \"Bearing stress between strut and pin\", round(s_b1,1), \"ksi\"\n",
"\n",
"#Part (b)\n",
"t_pin = (4*P)/(2*math.pi*(d_pin**2)) # average shear stress in the \n",
"print \"Shear stress in pin is \", round(t_pin,1), \"ksi\"\n",
"\n",
"# Part (c)\n",
"s_b2 = P/(2*t_G*d_pin) # bearing stress between pin and gusset\n",
"print \"Bearing stress between pin and gussets is\", s_b2, \"ksi\"\n",
"\n",
"# Part (d)\n",
"s_b3 = (P*math.cos(math.radians(40))/(4*t_B*d_b)) # bearing stress between anchor bolt and base plate\n",
"print \"Bearing stress between anchor bolts & base plate\", round(s_b3,1), \"ksi\"\n",
"\n",
"# Part (e)\n",
"t_bolt = (4*math.cos(math.radians(40))*P)/(4*math.pi*(d_b**2)) # shear stress in anchor bolt\n",
"print \"Shear stress in anchor bolts is\", round(t_bolt,1), \"ksi\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Bearing stress between strut and pin 21.3 ksi\n",
"Shear stress in pin is 13.6 ksi\n",
"Bearing stress between pin and gussets is 12.8 ksi\n",
"Bearing stress between anchor bolts & base plate 12.3 ksi\n",
"Shear stress in anchor bolts is 11.7 ksi\n"
]
}
],
"prompt_number": 39
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.7, page no. 42"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\"\"\"\n",
"determine stress at various parts\n",
"\"\"\"\n",
"\n",
"import math\n",
"\n",
"#initialisation\n",
"b1 = 1.5 # width of recmath.tangular crosssection in inch\n",
"t = 0.5 # thickness of recmath.tangular crosssection in inch\n",
"b2 = 3.0 # width of enlarged recmath.tangular crosssection in inch\n",
"d = 1.0 # diameter in inch\n",
"\n",
"#calculation\n",
"\n",
"# Part (a)\n",
"s_1 = 16000 # maximum allowable tensile stress in Psi\n",
"P_1 = s_1*t*b1 \n",
"print \"The allowable load P1 is\", P_1, \"lb\"\n",
"\n",
"# Part (b)\n",
"s_2 = 11000 # maximum allowable tensile stress in Psi\n",
"P_2 = s_2*t*(b2-d) \n",
"print \"allowable load P2 at this section is\", P_2, \"lb\"\n",
"\n",
"#Part (c)\n",
"s_3 = 26000 # maximum allowable tensile stress in Psi\n",
"P_3 = s_3*t*d \n",
"print \"The allowable load based upon bearing between the hanger and the bolt is\", P_3, \"lb\"\n",
"\n",
"# Part (d)\n",
"s_4 = 6500 # maximum allowable tensile stress in Psi\n",
"P_4 = (math.pi/4)*(d**2)*2*s_4 \n",
"print \"the allowable load P4 based upon shear in the bolt is\", round(P_4), \"lb\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The allowable load P1 is 12000.0 lb\n",
"allowable load P2 at this section is 11000.0 lb\n",
"The allowable load based upon bearing between the hanger and the bolt is 13000.0 lb\n",
"the allowable load P4 based upon shear in the bolt is 10210.0 lb\n"
]
}
],
"prompt_number": 42
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.8, page no. 46"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\"\"\"\n",
"calculating the cross sectional area \n",
"\"\"\"\n",
"\n",
"import math \n",
"\n",
"#initialisation\n",
"R_ah = (2700*0.8 + 2700*2.6)/2 # Horizontal component at A in N\n",
"R_ch = R_ah # Horizontal component at C in N\n",
"R_cv = (2700*2.2 + 2700*0.4)/3 # vertical component at C in N\n",
"R_av = 2700 + 2700 - R_cv # vertical component at A in N\n",
"R_a = math.sqrt((R_ah**2)+(R_av**2))\n",
"R_c = math.sqrt((R_ch**2)+(R_cv**2))\n",
"Fab = R_a # Tensile force in bar AB\n",
"Vc = R_c # Shear force acting on the pin at C\n",
"s_allow = 125000000 # allowable stress in tension \n",
"t_allow = 45000000 # allowable stress in shear\n",
"\n",
"#calculation\n",
"Aab = Fab / s_allow # required area of bar \n",
"Apin = Vc / (2*t_allow) # required area of pin\n",
"\n",
"\n",
"print \"Required area of bar is %f\" %Apin, \"m^2\"\n",
"d = math.sqrt((4*Apin)/math.pi) # diameter in meter\n",
"print \"Required diameter of pin is %f\" %d, \"m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Required area of bar is 0.000057 m^2\n",
"Required diameter of pin is 0.008537 m\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|