summaryrefslogtreecommitdiff
path: root/sample_notebooks/SPANDANAARROJU/Chapter4.ipynb
blob: e9783bbbcf268f1076eaf6092a6875ec70eedceb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 4: Defects in Crystals"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 1, Page number 4.14"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "equilibrium concentration of vacancy at 300K is 7.577 *10**5\n",
      "equilibrium concentration of vacancy at 900K is 6.502 *10**19\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "N=6.023*10**26;  #avagadro number\n",
    "T1=1/float('inf');     #temperature 0K(K)\n",
    "T2=300;\n",
    "T3=900;         #temperature(K)\n",
    "k=1.38*10**-23; #boltzmann constant \n",
    "deltaHv=120*10**3*10**3/N;    #enthalpy(J/vacancy)\n",
    "\n",
    "#Calculation\n",
    "#n1=N*math.exp(-deltaHv/(k*T1));    #equilibrium concentration of vacancy at 0K\n",
    "#value of n1 cant be calculated in python, as the denominator is 0 and it shows float division error\n",
    "n2=N*math.exp(-deltaHv/(k*T2));    #equilibrium concentration of vacancy at 300K \n",
    "n3=N*math.exp(-deltaHv/(k*T3));    #equilibrium concentration of vacancy at 900K \n",
    "\n",
    "#Result\n",
    "#print \"equilibrium concentration of vacancy at 0K is\",n1\n",
    "print \"equilibrium concentration of vacancy at 300K is\",round(n2/10**5,3),\"*10**5\"\n",
    "print \"equilibrium concentration of vacancy at 900K is\",round(n3/10**19,3),\"*10**19\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 2, Page number 4.15"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "fraction of vacancies at 1000 is 8.5 *10**-7\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "nbyN1=1*10**-10;      #fraction of vacancies\n",
    "T1=500+273;\n",
    "T2=1000+273;\n",
    "\n",
    "#Calculation\n",
    "lnx=T1*math.log(nbyN1)/T2;\n",
    "x=math.exp(lnx);      #fraction of vacancies at 1000\n",
    "\n",
    "#Result\n",
    "print \"fraction of vacancies at 1000 is\",round(x*10**7,1),\"*10**-7\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 3, Page number 4.16"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "concentration of schottky defects is 6.42 *10**11 per m**3\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "d=2.82*10**-10;    #interionic distance(m)\n",
    "T=300;             #temperature(K)\n",
    "k=1.38*10**-23;    #boltzmann constant \n",
    "e=1.6*10**-19;     #charge(coulomb)\n",
    "n=4;               #number of molecules\n",
    "deltaHs=1.971*e;   #enthalpy(J)\n",
    "\n",
    "#Calculation\n",
    "V=(2*d)**3;        #volume of unit cell(m**3)\n",
    "N=n/V;             #number of ion pairs\n",
    "x=deltaHs/(2*k*T);\n",
    "n=N*math.exp(-x);    #concentration of schottky defects(per m**3)\n",
    "\n",
    "#Result\n",
    "print \"concentration of schottky defects is\",round(n*10**-11,2),\"*10**11 per m**3\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example number 4, Page number 4.17"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "concentration of schottky defects is 9.23 *10**12 per cm**3\n",
      "amount of climb down by the dislocations is 0.1846 step or 0.3692 *10**-8 cm\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "N=6.026*10**23;    #avagadro number \n",
    "T=500;             #temperature(K)\n",
    "k=1.38*10**-23;    #boltzmann constant \n",
    "deltaHv=1.6*10**-19;     #charge(coulomb)\n",
    "V=5.55;            #molar volume(cm**3)\n",
    "nv=5*10**7*10**6;  #number of vacancies\n",
    "\n",
    "#Calculation\n",
    "n=N*math.exp(-deltaHv/(k*T))/V;    #concentration of schottky defects(per m**3)\n",
    "x=round(n/nv,4);            #amount of climb down by the dislocations(step)\n",
    "xcm=2*x*10**-8;             #amount of climb down by the dislocations(cm)\n",
    "\n",
    "#Result\n",
    "print \"concentration of schottky defects is\",round(n/10**12,2),\"*10**12 per cm**3\"\n",
    "print \"amount of climb down by the dislocations is\",x,\"step or\",xcm*10**8,\"*10**-8 cm\" "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}