summaryrefslogtreecommitdiff
path: root/sample_notebooks/Reshma Ustad/Chapter_2_Properties_Of_Material.ipynb
blob: 823b8e71e58d7f34d45819c1a8b460aef9f05a86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
{
 "metadata": {
  "name": "Chapter 2 Properties Of Material"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": "Chapter 2 Properties Of Material"
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 1 Page No:19"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#Input data\nL=5               # length of steel bar in m\nd=25*10**-3       # diametr of steel bar in mm\ndeltaLt=25*10**-3 #steel \npt=800            # power load of steel bar in N\n\n\n#calculation\nA=((pi/4)*((deltaLt)**2)) #Cross-section area\nsigmat=(pt)/(A)           #Stress in  steel bar\net=(deltaLt)/L            #strain in steel bar\nE=(sigmat)/(et)           #Young's modulus\n\n\n#output\nprint(\"value of Cross-section area A=\",A,\"m**2\")\nprint(\"value of tress in  steel bar sigmat=\",sigmat,\"MN/m**2\")\nprint(\"value of strain in steel bar et=  \",et)\nprint(\"value of Young's modulus E \",E,\"N/m**2\")\n\n\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "value of Cross-section area A= 0.0004906250000000001 m**2\nvalue of tress in  steel bar sigmat= 1630573.248407643 MN/m**2\nvalue of strain in steel bar et=   0.005\nvalue of Young's modulus E  326114649.6815286 N/m**2\n"
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 2 Page No:20\n"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#Input data\nL=300*10**-3  #length of hexagonal prismatic steel bar in mm\nA=500*10**-6  #Area of cross section of steel bar mm**2\nPt=500*10**3  # load of steel bar in KN\nE=210*10**9   # modulus of elasticity GN/m**2\n\n#Calculation\nsigmat=((Pt)/(A))   #stress in steel bar\net=((sigmat)/(E))   #strain steel bar is\ndeltaLt=((et)*(L))  #therefore,elongation of the steel bar is given by\n\n#output\nprint('stress in steel bar =',sigmat,\"N/m**2\")\nprint('therefore,strain steel bar is given by =',et,)\nprint('therefore,elongation of the steel bar is given by=',deltaLt,\"m\")\n\n\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "stress in steel bar = 1000000000.0 N/m**2\ntherefore,strain steel bar is given by = 0.004761904761904762\ntherefore,elongation of the steel bar is given by= 0.0014285714285714286 m\n"
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 3 Page No:21\n"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#Input Data\nPt=600      #tensils force in N\nd=2*10**-3  #diameter of steel wire in mm\nL=15        #length of wire in m\nE=210*10**9 #modulus of elasticity of the material in GN/M**2\npi=3.1482\n\n\n#Calculation\nA=((pi/4)*((d)**2))  #(1)cross section area\nsigmat=(Pt)/(A)    # stress in the steel wire \net=((sigmat)/(E))  #(2)therefore, strain in steel wire is given by\ndeltaLt=et*L       #(3)Enlongation of the steel wire is given by \npe=((deltaLt/L)*100)    #(4)percentage elongation\n\n\n#Output\nprint(\"cross section area A= \",A,\"m**2\")\nprint(\"stress in the steel wire sigmat=\",sigmat,\"GN/m**2\")\nprint(\"modulus of elasticity et=\",et,)\nprint(\"strain in steel wire deltaLt=\",deltaLt,\"mm\")\nprint(\"percentage elongation\",pe,\"%\")\n\n\n\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "cross section area A=  3.1481999999999998e-06 m**2\nstress in the steel wire sigmat= 190585096.24547362 GN/m**2\nmodulus of elasticity et= 0.0009075480773593982\nstrain in steel wire deltaLt= 0.013613221160390973 mm\npercentage elongation 0.09075480773593982 %\n"
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 4 Page No:22\n"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#input data\nA=30*30*10**-6 #area of square rod in mm**2\nL=5            #length of square rod in m\nPc=150*10**3   # axial comperessive load of a rod  in kN\nE=215*10**9    # modulus of elasticity in GN/m**2\n\n\n#Calculation\nsigmac=((Pc)/(A))   #stress in square rod\nec=((sigmac)/(E))   #modulusof elasticity is E=sigmac/ec ,therefore strain in square rod is\ndeltaLc=ec*5        #therefore shortening of length of the rod \n\n\n#Output\nprint (\"stress in square rod\",sigmac,\"N/m**2\")\nprint(\"strain in square rod ec=\",ec,)\nprint(\"shortening of length of the rod=\",deltaLc,\"m\")",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "stress in square rod 166666666.66666666 N/m**2\nstrain in square rod ec= 0.0007751937984496124\nshortening of length of the rod= 0.003875968992248062 m\n"
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 5 Page No:23"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#input data\nd=50*10**-6 #diameter of metalic rod in mm**2\nL=220*10**-3 #length of metalic rod in mm\nPt=40*10**3 #load of metalic rod in KN\ndeltaLt=0.03*10**-3 #elastic enlongation in mm\nypl=160*10**3 # yield point load in KN\nml=250*10**3 #maximum load in KN\nlsf=270*10**-3 #length of specimen at fracture in mm\npi=3.1482\n\n#calculation\nA=(((pi)/(4)*((d)**2))) #(1)cross section area\nsigmat=(Pt/A) #stress in metallic rod\net=(deltaLt/L) #strain n metallic rod\nE=(sigmat/et) #young's modulus\nys=(ypl/A) #(2)yeild strength\nuts=(ml/A) #(3)ultimate tensile strength\nPebf=((lsf-L)/L)*100 #percentage elongation before fracture \n\n\n\n#output\nprint(\"cross section area\",A,\"m**2\")\nprint(\"stress in metallic rod\",sigmat,\"N/m**2\")\nprint(\"strain n metallic rod\",et,)\nprint(\"young's modulus\",E,\"GN/m**2\")\nprint(\"yeild strength\",ys,\"MN/m**2\")\nprint(\"ultimate tensile strength\",uts,\"MN/m**2\")\nprint(\"percentage elongation before fracture\",Pebf,\"%\")\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "cross section area 1.967625e-09 m**2\nstress in metallic rod 20329076932850.52 N/m**2\nstrain n metallic rod 0.00013636363636363637\nyoung's modulus 1.4907989750757046e+17 GN/m**2\nyeild strength 81316307731402.08 MN/m**2\nultimate tensile strength 127056730830315.75 MN/m**2\npercentage elongation before fracture 22.727272727272734 %\n"
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 6 Page No:24\n"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#input data\nA=50*50*10**-6            #area ofsquare metal bar in mm**2\nPc=600*10**3              #axial compress laod in KN\nL=200*10**-3              # gauge length of metal bar in mm\ndeltaLc=0.4*10**-3        #contraction length of metal bar in mm\ndeltaLlateral=0.05*10**-3 #lateral length of metal bar in mm\n\n#Calculation\nsigmac=((Pc)/(A))        #stress in square metal bar \nec=((deltaLc)/(L))        #longitudinal or linear strain in square metal bar\nE =((sigmac)/(ec))        #smodule of elasticity\nelateral=((deltaLlateral)/(L)) #lateral strain in square metal bar\npoissonsratio=(elateral)/(ec)\n\n\n#output\nprint(\"stress in bar=\",sigmac,\"n/m**2\")\nprint(\"longitudinal or linear strain in square metal bar=\",ec,)\nprint(\"module of elasticity=\",E,\"N/m**2\")\nprint(\"lateral strain in square metal bar=\",elateral,)\nprint(\"poissons ratio=\",poissonsratio,)\n\n#poisson's ratio",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "stress in bar= 240000000.0 n/m**2\nlongitudinal or linear strain in square metal bar= 0.002\nmodule of elasticity= 120000000000.0 N/m**2\nlateral strain in square metal bar= 0.00025\npoissons ratio= 0.125\n"
      }
     ],
     "prompt_number": 12
    }
   ],
   "metadata": {}
  }
 ]
}