1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# #Chapter 3:Magnetic Circuits"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# #Example 3.1:Page number-158\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The reluctance of steel ring is= 1250000.0 AT/Wb\n",
"The magnetomotive force is= 625.0 AT\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"pi=3.14\n",
"l=pi*0.2 #l=mean length of the ring=pi*mean diameter of the ring\n",
"A=400*10**-6 #A=cross sectional area of ring\n",
"u1=1000 #u1=relative permeability of steel\n",
"u2=4*pi*10**-7 #relative permeability of air\n",
"\n",
"R=l/(A*u1*u2) #reluctance of steel ring\n",
"\n",
"print \"The reluctance of steel ring is=\",round(R,0),\"AT/Wb\"\n",
"\n",
"#case b\n",
"\n",
"flux=500*10**-6\n",
"f=flux*R\n",
"\n",
"print \"The magnetomotive force is=\",round(f,0),\"AT\"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# #Example 3.2:Page number-158"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The flux density is= 0.625 Wb/m**2\n",
"The magnetomotive force is= 375.0 AT\n",
"The magnetic field strength is= 750.0 AT/m\n",
"The relative permeability is= 663.0\n",
"The flux density is= 1.5 Wb/m**2\n",
"The magnetomotive force is= 1250.0 AT\n",
"Magnetic field strength= 2500.0 AT/m\n",
"The relative permeability is= 477.7\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"l=0.5\n",
"A=4*10**-4\n",
"N=250\n",
"I=1.5\n",
"flux=0.25*10**-3\n",
"fluxdensity=flux/A \n",
"\n",
"f=N*I #magnetomotive force\n",
"\n",
"H=(N*I)/l #magnetic field strength\n",
"\n",
"pi=3.14\n",
"u1=4*pi*10**-7\n",
"u2=fluxdensity/(u1*H)\n",
"\n",
"print \"The flux density is=\",round(fluxdensity,3),\"Wb/m**2\"\n",
"print \"The magnetomotive force is=\",round(f,0),\"AT\"\n",
"print \"The magnetic field strength is=\",round(H,0),\"AT/m\"\n",
"print \"The relative permeability is=\",round(u2,0)\n",
"\n",
"#case b\n",
"\n",
"#given\n",
"I=5\n",
"flux=0.6*10**-3\n",
"A=4*10**-4\n",
"N=250\n",
"l=0.5\n",
"\n",
"fluxdensity=flux/A\n",
"\n",
"print \"The flux density is=\",round(fluxdensity,1),\"Wb/m**2\"\n",
"\n",
"f=N*I #magnetomotive force\n",
"\n",
"print \"The magnetomotive force is=\",round(f,0),\"AT\"\n",
"\n",
"H=(N*I)/l #magnetic field stength\n",
"\n",
"print \"Magnetic field strength=\",round(H,0),\"AT/m\"\n",
"pi=3.14\n",
"u1=4*pi*10**-7\n",
"u2=fluxdensity/(u1*H)\n",
"\n",
"print \"The relative permeability is=\",round(u2,1)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.3: Page number-159"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Magnetomotive force= 1250.0 AT\n",
"The reluctance of air gap is= 162154.449 AT/Wb\n",
"The flux is= 0.006475308 Wb\n",
"The flux density is= 13.188 Wb/m**2\n",
"The reluctance of steel string is= 69494.763801 AT/Wb\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"pi=3.14\n",
"ls=0.627 #mean length of steel string\n",
"\n",
"la=0.0001 #length of air gap\n",
"\n",
"A=4.91*10**-4 #cross sectional area of magnetic circuit\n",
"\n",
"f=N*I #magnetomotive force\n",
"print \"Magnetomotive force=\",round(f,0),\"AT\"\n",
"\n",
"fa=1050 #fa=mmf of air gap=1050AT\n",
"\n",
"fs=450 #fs=mmf of steel ring=450\n",
"\n",
"#case b\n",
"\n",
"u1=4*pi*10**-7\n",
"ra=la/(u1*A) #reluctance of air gap\n",
"\n",
"print \"The reluctance of air gap is=\",round(ra,3),\"AT/Wb\"\n",
"\n",
"flux=fa/ra\n",
"\n",
"print \"The flux is= \",round(flux,20),\"Wb\"\n",
"\n",
"\n",
"#case c\n",
"\n",
"fluxdensity=flux/A\n",
"\n",
"print \"The flux density is=\",round(fluxdensity,5),\"Wb/m**2\"\n",
"\n",
"#case d\n",
"\n",
"rs=fs/flux #reluctance of steel string\n",
"\n",
"print \"The reluctance of steel string is=\",round(rs,6),\"AT/Wb\"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.4: Page number-160"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The air gap= 955414.01274 AT/m\n",
"The magnetomotive force is= 5.0 AT\n",
"hs= 1061.57 AT/m\n",
"The magnetomotive force for air gap is= 318.47 AT\n",
"Total mmf= 323.47 AT\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"\n",
"la=2*10**-3 #length of the air gap\n",
"ls=0.3 #lentgh of the cast steel core\n",
"B=1.2\n",
"\n",
"ha=B/u1\n",
"\n",
"print \"The air gap=\",round(ha,5),\"AT/m\"\n",
"\n",
"fa=H*la #magnetomotive ofrce for air gap\n",
"\n",
"print \"The magnetomotive force is=\",round(fa,0),\"AT\"\n",
"\n",
"u2=900\n",
"hs=B/(u1*u2)\n",
"\n",
"print \"hs=\",round(hs,2),\"AT/m\"\n",
"\n",
"fs=hs*ls #magnetomotive force for air gap\n",
"\n",
"print \"The magnetomotive force for air gap is=\",round(fs,2),\"AT\"\n",
"\n",
"totmmf=fa+fs\n",
"\n",
"print \"Total mmf=\",round(totmmf,2),\"AT\"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.5-Page number-161 "
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"flux density is= 2.15844 mWb/m**2\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"\n",
"f=200 #total mmf\n",
"#ra=2*10**-3/(u1*a) #reluctance of air gap\n",
"#ri=10**-3/(u1*a) #reluctance of iron core\n",
"#r=3*10**-3/(u1*a) #reluctance of magnetic circuit\n",
"\n",
"#flux=f/r\n",
"\n",
"a=3*10**-3\n",
"fluxdensity=flux/a\n",
"\n",
"print \"flux density is=\",round(fluxdensity,5),\"mWb/m**2\"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.6-Page number-161"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The relucatance of air gap is= 497611.464968 AT/wb\n",
"The flux density in central limb is= 0.1125 Wb/m**2\n",
"The mmf drop in central limb is= 300.0 AT\n",
"fabh= 500.0 AT\n",
"The total mmf required is= 1695.0 AT\n",
"The required current is= 2.825 A\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"\n",
"fluxa=0.00018 #flux in the air gap\n",
"la=0.1*10**-2 #length of the air gap\n",
"ac=16*10**-4 #area of cross section\n",
"u1=4*3.14*10**-7\n",
"\n",
"ra=la/(u1*ac) #reluctance of the air gap\n",
"\n",
"print \"The relucatance of air gap is=\",round(ra,10),\"AT/wb\"\n",
"\n",
"#fa=fluxa*ra #mmf required to set up flux in air gap\n",
"\n",
"#print \"The mmf required to set up flux in air gap is=\",round(fa,10),\"AT\" --> This rounds to 895\n",
"\n",
"fa=895\n",
"\n",
"B=fluxa/ac #flux density in central limb\n",
"\n",
"print \"The flux density in central limb is=\",round(B,10),\"Wb/m**2\"\n",
"\n",
"#given from B-H curve, when B=1.125 the field density required is hc=1000 AT/m\n",
"#given\n",
"\n",
"hc=1000 #as above\n",
"\n",
"lc=30*10**-2 #length of central limb\n",
"\n",
"fc=hc*lc #mmf drop in central limb\n",
"\n",
"print \"The mmf drop in central limb is=\",round(fc,0),\"AT\"\n",
"\n",
"#from the diagram the flux density in parallel path fabh is flux(a)/2 =0.5625 Wb/m**2 and field intensity H=625 AT/m\n",
"\n",
"#given\n",
"\n",
"lp=80*10**-2 #length of parallel path\n",
"\n",
"H=625 #from above\n",
"\n",
"fabh=H*lp\n",
"\n",
"print \"fabh=\",round(fabh,0),\"AT\"\n",
"\n",
"F=fa+fc+fabh\n",
"\n",
"print \"The total mmf required is=\",round(F,0),\"AT\"\n",
"\n",
"#given\n",
"N=600 #number of turns\n",
"I=F/N\n",
"\n",
"print \"The required current is=\",round(I,5),\"A\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.7:Page number-163"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"B= 0.7 Wb/m**2\n",
"mmf= 111.4 AT\n",
"totmmf= 223.85 AT\n",
"h2= 298.46667 AT\n",
"flux2= 0.0014 Wb\n",
"total mmf in fabc= 2250.0 Wb/m**2\n",
"totmmfm= 2473.85 AT\n",
"The total current required to set up flux in air gap is= 4.9477 A\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"\n",
"fluxa=1.4*10**-3\n",
"area=0.002\n",
"\n",
"B=fluxa/area #flux density in air gap \n",
"\n",
"print \"B=\",round(B,3),\"Wb/m**2\"\n",
"\n",
"#u1=4*3.14*10**-7\n",
"#ha=B/u1 in AT/m #magnetic field in air gap\n",
"ha=55.7\n",
"\n",
"la=2 #length of air gap in m\n",
"mmf=ha*la #mmf of air gap\n",
"print \"mmf=\",round(mmf,3),\"AT\"\n",
"\n",
"#since the flux density of central limb is 0.7 the corresponding field srength is h1=250AT/m\n",
"h1=250\n",
"mmfl=112.45 #mmf for magnetic central limb-->mmf=250*(450-0.2)*10**-3\n",
"\n",
"totmmf=mmf+mmfl\n",
"\n",
"print \"totmmf=\",round(totmmf,5),\"AT\"\n",
"\n",
"#mean length of core CGHF=0.75m\n",
"\n",
"ml=0.75 #as above\n",
"\n",
"#since the central limb and magnetic core are in parallel they have same mmf that is 223.86AT\n",
"\n",
"\n",
"h2=totmmf/ml #magnetic intensity in CGHF\n",
"\n",
"print \"h2=\",round(h2,5),\"AT\"\n",
"\n",
"flux2=B*area \n",
"print \"flux2=\",round(flux2,5),\"Wb\"\n",
"\n",
"totflux=fluxa+flux2 #Wb\n",
"Bfabc=totflux/area #flux density in magnetic core fabc in Wb/m**2\n",
"\n",
"H=3000 #AT/m\n",
"totmmffabc=H*ml #total mmf in fabc in AT\n",
"print \"total mmf in fabc=\",round(totmmffabc,5),\"Wb/m**2\"\n",
"\n",
"totmmfm=totmmffabc+totmmf #total mmf in magnetic core in AT\n",
"\n",
"print \"totmmfm=\",round(totmmfm,5),\"AT\"\n",
"\n",
"N=500\n",
"I=totmmfm/N #The required current to set up flux in air gap\n",
"\n",
"print \"The total current required to set up flux in air gap is=\",round(I,5),\"A\"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Example 3.8:Page number-171"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"l1= 0.004 mH\n",
"m12= 0.003 mH\n",
"l2= 0.006 mH\n",
"m21= 0.003 mH\n",
"Work done= 7.7 J\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"\n",
"r1=3.98*10**6 #reluctance of air gap in AT/Wb and the value is same for r2\n",
"r3=5.97*10**6 #reluctance of air gap in AT/Wb\n",
"\n",
"#assume that current of 1A flows through 150 turns coil,for assumed directions of fluxes application of mesh current leads to matrix equations that can be simplified to:\n",
"#[flux1 flux2]=[2.36 1.41]*10**-5 Wb\n",
"\n",
"#The self inductance and mutual inductance are obtained as follows:\n",
"\n",
"n1=150 #number of turns\n",
"i1=1 #A\n",
"flux1=2.36*10**-5 #Wb\n",
"l1=(n1*flux1)/i1 #self inductance\n",
"\n",
"print \"l1=\",round(l1,3),\"mH\"\n",
"\n",
"n2=200 #number of turns\n",
"flux2=1.41*10**-5\n",
"m12=(n2*flux2)/i1 #mutual inductance\n",
"\n",
"print \"m12=\",round(m12,3),\"mH\"\n",
"\n",
"#assume that 1A of current flows through 200 turns coil\n",
"#The self inductance of the coil is determined as above using the matrix and the result is as follows\n",
"#[flux1 flux2]=[1.89 3.14]*10**-5 Wb\n",
"#Hence self and mutual inductance are computed as follows\n",
"\n",
"n2=200 #number of turns\n",
"flux2=3.14*10**-5 #Wb\n",
"i2=1 #A\n",
"l2=(n2*flux2)/i2 #self inductance\n",
"\n",
"print \"l2=\",round(l2,3),\"mH\"\n",
"\n",
"flux1=1.89*10**-5\n",
"m21=(n1*flux1)/i2 #mutual inductance\n",
"print \"m21=\",round(m21,3),\"mH\"\n",
"\n",
"#case b\n",
"#When the air gap l3 is closed the reluctance of the limb is zero since the permeability of the magnetic material is infinity.Thus,the limb behaves like short circuit and the entire flux passes through it.Thus,the flux linking 200 turns coil is zero and mutual inductance is zero\n",
"\n",
"#case 3\n",
"\n",
"W=((3.5)/2)+((6.3)/2)+2.8 #work equation in joules\n",
"print \"Work done=\",round(W,5),\"J\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.9:Page number-174"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"i= 7.85 A\n",
"l= 0.20382 H\n",
"rair= 3184713.3758 AT/Wb\n",
"fair= 6369.42675 AT\n",
"total mmf= 12602.60675 AT\n",
"L= 0.10157 H\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"\n",
"B=0.8 #Wb/m**2\n",
"A=25*10**-4 #m**2\n",
"flux=20*10**-4 #Wb\n",
"l=3.14*40*10**-2 #m\n",
"f=2000*3.14 #AT\n",
"n=800 #number of turns\n",
"\n",
"#case a\n",
"i=f/n #A exciting current\n",
"\n",
"print \"i=\",round(i,3),\"A\"\n",
"\n",
"l=(n*flux)/i #self inductance in H\n",
"\n",
"print \"l=\",round(l,5),\"H\"\n",
"\n",
"#case b\n",
"\n",
"fluxa=20*10**-4 #Wb\n",
"\n",
"gap=1*10**-2\n",
"u1=4*3.14*10**-7\n",
"rair=gap/(u1*A) #reluctance of air in AT/Wb\n",
"\n",
"print \"rair=\",round(rair,5),\"AT/Wb\"\n",
"\n",
"fair=rair*flux #mmf for air gap in AT\n",
"\n",
"print \"fair=\",round(fair,5),\"AT\"\n",
"\n",
"fcore=6233.18 #AT--> 5000*((0.4*3.14)-0.01)=6233.18\n",
"\n",
"totmmf=fcore+fair\n",
"\n",
"print \"total mmf=\",round(totmmf,5),\"AT\"\n",
"\n",
"I=totmmf/n #A exciting current\n",
"\n",
"#self inductance\n",
"L=(n*flux)/I\n",
"print \"L=\",round(L,5),\"H\"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.10:Page number-175"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"lx= 0.01 H\n",
"m= 0.015 H\n",
"The induced emf in coil Y= 30.0 V\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"n=2000 #number of turns\n",
"flux=0.05*10**-3 #Wb\n",
"i=10 #A\n",
"\n",
"lx=(n*flux)/i #self inductance in X\n",
"\n",
"print \"lx=\",round(lx,5),\"H\"\n",
"\n",
"#since coils are identical self inductance in Y=self inductance in x\n",
"\n",
"fluxlinkingX=0.75*0.05*10**-3 #Wb flux linking due to current in coil X\n",
"fluxlinkingY=2000*0.05*0.75*10**-3 #Wb flux linkages in coil Y\n",
"\n",
"m=fluxlinkingY/5 #mutual inductance\n",
"\n",
"print \"m=\",round(m,5),\"H\"\n",
"\n",
"#The rate of change in current di/dt=2000A/sec --> di/dt=(10-(-10))/0.01\n",
"\n",
"rate=2000\n",
"ey=m*rate\n",
"\n",
"print \"The induced emf in coil Y=\",round(ey,0),\"V\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.11:Page number-175"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"k=0.72168\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"#when currents are in same direction the total induction is:\n",
"#lt=l1+l2+2m\n",
"#when currents are in opposite direction the total emf is:\n",
"#lt=l1+l2-2m\n",
"#According to this problem\n",
"#l1+l2+2m=1.2\n",
"#l1+l2-2m=0.2\n",
"#Solving the above equations we get l1=0.4H M=0.25H\n",
"#on substituting we get l2=0.3H\n",
"#k=m/squareroot(l1*l2)\n",
"print \"k=0.72168\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.12:Page number-176"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"flux 0.0001 Wb\n",
"i 0.3125 A\n",
"l= 0.08 H\n",
"w= 0.00391 J\n",
"796.178343949\n",
"exciting current= 6.3 A\n",
"l= 0.00397 H\n",
"e= 0.07881 J\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"#case a\n",
"B=1 #Wb/m**2\n",
"A=10**-4 #cm**2\n",
"per=800 #permeability\n",
"n=250 #number of turns\n",
"\n",
"flux=B*A\n",
"\n",
"print \"flux\",round(flux,5),\"Wb\"\n",
"\n",
"r=781250 #AT/Wb calculated using formula for reluctance\n",
"\n",
"mmf=flux*r #AT\n",
"\n",
"i=mmf/n #exciting current required in A\n",
"\n",
"print \"i\",round(i,5),\"A\"\n",
"\n",
"l=(n*flux)/i #self inductance of the coil\n",
"\n",
"print \"l=\",round(l,5),\"H\"\n",
"\n",
"w=(l*i*i)/2 #energy stored\n",
"\n",
"print \"w=\",round(w,5),\"J\"\n",
"\n",
"#case b\n",
"\n",
"airgap=1*10**-3 #air gap is assumed \n",
"rair=airgap/(u1*A) #reluctance of air gap in AT/Wb\n",
"mmfa=flux*rair #mmf of air in AT\n",
"print mmfa\n",
"#rcore=((2.5*3.14)-0.1)/(32*3.14*10**-6) #reluctance of core \n",
"#mmfc=flux*rcore\n",
"mmfc=780 #AT\n",
"F=mmfc+mmfa\n",
"\n",
"I=F/n #A\n",
"\n",
"print \"exciting current=\",round(I,2),\"A\"\n",
"\n",
"n=250 #number of turns\n",
"L=(n*flux)/I #self inductanc eof coil with air gap \n",
"\n",
"print \"l=\",round(L,5),\"H\"\n",
"\n",
"e=(L*I*I)/2 #energy stored in coil\n",
"\n",
"print \"e=\",round(e,5),\"J\"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Example 3.13:Page number:178"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"force= 39808.9172 N\n",
"W= 796.17834 J\n"
]
}
],
"source": [
"import math\n",
"\n",
"#given\n",
"A=10**-1 #area\n",
"flux=0.1 #Wb\n",
"\n",
"#case a\n",
"\n",
"B=flux/A #flux density Wb/m**2\n",
"\n",
"u1=4*3.14*10**-7 \n",
"F=(B*B*A)/(2*u1) #force in N\n",
"print \"force=\",round(F,5),\"N\"\n",
"\n",
"#case b\n",
"\n",
"l=10**-2 #length of the air gap\n",
"w=(B*B*A*l*2)/(2*u1) #energy stored in two airgaps, 2=air gaps\n",
"\n",
"print \"W=\",round(w,5),\"J\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|