1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
{
"metadata": {
"name": "",
"signature": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 4, Fuel Air and Actual Cycles"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.10, page 340"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Initialisation of Variables\n",
"r=7 #Compression Ratio\n",
"t2=715 #Temperature at the end of isentropic compression in Kelvin\n",
"t4=1610 #Temperature at the end of expansion in Kelvin\n",
"#Calculations\n",
"vr2=65.8 #From steam table\n",
"u2=524.2 #From steam table\n",
"vr4=5.69 #From steam table\n",
"u4=1307.63 #From steam table\n",
"vr1=r*vr2 \n",
"t1=338 #From steam table\n",
"u1=241.38 #From steam table\n",
"vr3=vr4/r \n",
"t3=2800 #From steam table\n",
"u3=2462.5 #From steam table\n",
"W=(u3-u2)-(u4-u1) #Work done\n",
"Qa=(u3-u2) #Heat added\n",
"eta=W/Qa #Cycle efficiency\n",
"print \"The cycle work = %0.2f kJ/kg \" %W \n",
"print \"The cycle efficiency = %0.2f %%\" %(eta*100) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The cycle work = 872.05 kJ/kg \n",
"The cycle efficiency = 44.99 %\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.2, page 342"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log\n",
"# Initialisation of Variables\n",
"r=8 #Compression Ratio\n",
"ga=1.4 #Degree of freedom for the gas\n",
"Cvinc=1.1 #Increase of specific heat at constant volume in percentage\n",
"#Calculations\n",
"eta=1-1/(r**(ga-1)) #efficiency of otto cycle\n",
"deta=(1-eta)*(ga-1)*log(r)*(Cvinc/100) #Change in efficiency\n",
"etach=-deta/eta #Percentage change in efficiency of change in efficiency\n",
"print \"The percentage change in the efficiency of otto cycle = %0.2f %%\"%(etach*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The percentage change in the efficiency of otto cycle = -0.71 %\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.3, page 345"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Initialisation of Variables\n",
"r=7.0 #Compression Ratio\n",
"ga=1.4 #Degree of freedom for the gas\n",
"Cvinc=3.0 #Increase of specific heat at constant volume in percentage\n",
"#Calculations\n",
"eta=1-1/(r**(ga-1)) #efficiency of otto cycle\n",
"deta=(1-eta)*(ga-1)*log(r)*(Cvinc/100) #Change in efficiency\n",
"etach=-deta/eta #Percentage change in efficiency of change in efficiency\n",
"print \"The percentage change in the efficiency of otto cycle = %0.2f %%\"%(etach*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The percentage change in the efficiency of otto cycle = -1.98 %\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.4, page 349"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Initialisation of Variables\n",
"r=18.0 #Compression Ratio\n",
"co=5.0 #Cut off percent of stroke\n",
"cv=0.71 #Mean specific heat for cycle in kJ/kg K\n",
"R=0.285 #Charecteristic gas constant in kJ/kh K\n",
"cvinc=2.0 #Percentage increase in mean specific heat of the cycle\n",
"#Calculation\n",
"rho=(co/100)*(r-1)+1 \n",
"ga=1+(R/cv) \n",
"eta=1-(1/(ga*(r**(ga-1))))*((rho**ga)-1)/(rho-1) #Efficiency of diesel cycle \n",
"etach=-((1-eta)/eta)*(ga-1)*(log(r)-(((rho**ga)*log(rho))/((rho**ga)-1))+(1/ga))*(cvinc/100) #Variation in the air standard efficiency\n",
"print \"The percentage change in the efficiency = %0.2f %%\"%(etach*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The percentage change in the efficiency = -1.15 %\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.5, page 351"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from numpy import sqrt\n",
"# Initialisation of Variables\n",
"r=7 #Compression ratio\n",
"C=44000 #Calorific value of fuel used in kJ/kg\n",
"afr=15 #Air fuel ratio\n",
"t1=338 #Temperature of the charge at the end of the stroke in Kelvin\n",
"p1=1 #Pressure of the charge at the end of the stroke in bar\n",
"n=1.33 #Index of compression\n",
"cv=0.71 #Specific heat constant at constant volume in kJ/kgK\n",
"k=20*10**(-5) \n",
"#Calculations\n",
"p2=p1*(r)**n \n",
"t2=(t1*p2)/(p1*r) \n",
"ha=C/(afr+1) #Heat added per kg of charge in kJ\n",
"t3=((-2*cv)+sqrt((4*cv*cv)+(4*k*((2*cv*t2)+(k*t2*t2)+(2*ha)))))/(2*k) \n",
"p3=(p2*t3)/t2 #Max pressure for constant volume process in bar\n",
"P3=p2*((ha/cv)+t2)/t2 #Max pressure for constant specific heat in bar\n",
"print \"Max pressure in the cylinder = %0.2f bar \" %(p3)\n",
"print \"Max pressure for constant specific heat = %0.2f bar\" %P3"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Max pressure in the cylinder = 65.52 bar \n",
"Max pressure for constant specific heat = 93.52 bar\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.6, page 356"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Initialisation of Variables\n",
"r=10 #Compression ratio\n",
"C=48000 #Calorific value of fuel used in kJ/kg\n",
"afr=15 #Air fuel ratio\n",
"t1=330 #Temperature of the charge at the end of the stroke in Kelvin\n",
"p1=1 #Pressure of the charge at the end of the stroke in bar\n",
"n=1.36 #Index of compression\n",
"cv=0.7117 #Specific heat constant at constant volume in kJ/kgK\n",
"k=2.1*10**(-4) \n",
"#Calculations\n",
"p2=p1*(r)**n \n",
"t2=t1*((p2/p1)**((n-1)/n)) \n",
"ha=C/(afr+1) #Heat added per kg of charge in kJ\n",
"t3=((-2*cv)+sqrt((4*cv*cv)+(4*k*((2*cv*t2)+(k*t2*t2)+(2*ha)))))/(2*k) \n",
"p3=(p2*t3)/t2 #Max pressure for constant volume process in bar\n",
"P3=p2*((ha/cv)+t2)/t2 #Max pressure for constant specific heat in bar\n",
"print \"Max pressure in the cylinder = %0.2f bar \" %(p3)\n",
"print \"Max pressure for constant specific heat = %0.2f bar\" %P3"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Max pressure in the cylinder = 102.27 bar \n",
"Max pressure for constant specific heat = 150.64 bar\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.7, page 360"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Initialisation of Variables\n",
"r=15 #Compression ratio\n",
"C=43000 #Calorific value of fuel used in kJ/kg\n",
"afr=27 #Air fuel ratio\n",
"t2=870 #Temperature of the charge at the end of the stroke in Kelvin\n",
"cv=0.71 #Specific heat constant at constant volume in kJ/kgK\n",
"R=0.287 #Gas constant in kJ/kgK\n",
"k=20*10**(-5) \n",
"#Calculations\n",
"cp=cv+R #Specific heat at constant pressure\n",
"ha=C/(afr+1) #Heat added per kg of charge in kJ\n",
"t3=((-2*cp)+sqrt((4*cp*cp)+(4*k*((2*cp*t2)+(k*t2*t2)+(2*ha)))))/(2*k) \n",
"co=((t3/t2)-1)/(r-1) #combustion occupies this amt of stroke \n",
"print \"Percentage of the stroke when the combustion is completed is\",round((co*100),2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Percentage of the stroke when the combustion is completed is 9.77\n"
]
}
],
"prompt_number": 28
}
],
"metadata": {}
}
]
}
|