1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
{
"metadata": {
"name": "",
"signature": "sha256:7252e18079dddfe390b8ba1aeebeccc0ce63f41488e78d7d5f7b5e2c14af82fb"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter2 - Semiconductor Devices"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex-2.1 Pg-2.18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Vf=0.2 #voltage in volts\n",
"Vr=60 #voltage in volts\n",
"If=60*10**(-3) #current in ampere\n",
"I0=0.025*10**(-3) #current in ampere\n",
"Rf=Vf/If #forward resistance\n",
"Rr=Vr/I0 #reverse resistance\n",
"Rr=Rr*1e-6\n",
"print \"the equivalent resistance are Rf=%.3f ohm and Rr=%-.1f M ohm\"%(Rf,Rr)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the equivalent resistance are Rf=3.333 ohm and Rr=2.4 M ohm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Chapter-2 Ex-2.2 Pg-2.18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Vf=0.7 \n",
"If=0.06 \n",
"Rf=Vf/If #DC forward resistance\n",
"print \"\\n DC forward resistance Rf : %.2f ohm\\n\"%(Rf)\n",
"print \"as the forward voltage changes from P to Q\"\n",
"delta_Vf=0.77-.7 \n",
"delta_If=(120-60)*10**(-3) \n",
"rf=delta_Vf/delta_If #dynamic forward resistance\n",
"print \"\\n Dynamic forward resistance rf : %.3f ohm\"%(rf)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" DC forward resistance Rf : 11.67 ohm\n",
"\n",
"as the forward voltage changes from P to Q\n",
"\n",
" Dynamic forward resistance rf : 1.167 ohm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2_3 Pg-2-22"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"V=10 #supply voltage\n",
"Rf=0 #forward resistance\n",
"Rl=1 #load resistance in k ohm\n",
"Vin=0.7 #cut in voltage\n",
"Il=(V-Vin)/Rl #applying KVL to the loop\n",
"If=Il \n",
"print \"\\n \\n current through the resistance Il=If = is %.1f mA\"%(If)\n",
"Vl=Il*Rl \n",
"print \"\\n \\n voltage across Rl is %.1f V\"%(Vl)\n",
"Pd=If*Vin \n",
"print \"\\n \\n diode power Pd = %.2f mW\"%(Pd)\n",
"Pl=Il*Vl \n",
"print \"\\n \\n load power Pl = %.2f mW\"%(Pl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" \n",
" current through the resistance Il=If = is 9.3 mA\n",
"\n",
" \n",
" voltage across Rl is 9.3 V\n",
"\n",
" \n",
" diode power Pd = 6.51 mW\n",
"\n",
" \n",
" load power Pl = 86.49 mW\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EX2_4 PG-2.23"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Vf=0.7 #cut-in voltage\n",
"V=10 #supply voltage\n",
"Rl=500 #load resistance\n",
"If=(V-Vf)/Rl #applying KVL to the circuit\n",
"If=If*1e3\n",
"print \"\\n Forward current is %.2f mA\\n\"%(If)\n",
"print \"When forward resistance is Rf is 3.2 Ohm then\"\n",
"print \"the equivalent circuit is as shown in fig-2.25(b)\"\n",
"Rf=3.2 \n",
"If=(V-Vf)/(Rl+Rf) #applying KVL to the circuit\n",
"If=If*1e3\n",
"print \"\\n therefore Forward current is %.4f mA\"%(If)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
" Forward current is 18.60 mA\n",
"\n",
"When forward resistance is Rf is 3.2 Ohm then\n",
"the equivalent circuit is as shown in fig-2.25(b)\n",
"\n",
" therefore Forward current is 18.4817 mA\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EX2_5 PG-2.23"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"%matplotlib inline\n",
"from matplotlib.pyplot import plot, xlabel, ylabel, show, grid, title\n",
"If=80e-3 #maximum forward current\n",
"Rf=0.4 #dynamic resistance\n",
"Vin=0.3 #cut-in voltage for germanium\n",
"print \"when forward current is zero then\"\n",
"Vf=Vin #voltage across the diode\n",
"print \" voltage across the diode is %1.1f V\\n\"%(Vf)\n",
"print \"when forward current is 80mA then\"\n",
"Vf=Vin+If*Rf \n",
"print \" voltage across the diode is %1.3f V\"%(Vf)\n",
"x=np.array([0,.1, .2, .3, .332]) #x-coordinate\n",
"y=np.array([0, 0, 0, 0, 80]) #y-coordinate\n",
"plot(x,y)\n",
"xlabel('voltage across the diode (V) ') \n",
"ylabel('current (mA)') \n",
"title('Piecewise linear characteristic')\n",
"grid()\n",
"show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"when forward current is zero then\n",
" voltage across the diode is 0.3 V\n",
"\n",
"when forward current is 80mA then\n",
" voltage across the diode is 0.332 V\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4HGWd9vHvHRIEQuAkLElYDwEBdRgDKKKgHhAwOizi\ngrsJ44CDL8K84ghuA4jIoqO8LuPMKJAIM+jIQCSKSoAcRGQRyInIFhIIW0gghCUBDYb83j/q6aTP\n4Sx9lurq6r4/19XXqae6q+ru7qSfrufXVaWIwMzMrGJU0QHMzKyxuGMwM7Nu3DGYmVk37hjMzKwb\ndwxmZtaNOwYzM+vGHUOLkLRKUnsD5PiCpB+O8DrPkHRJmt4pPVeN5DZGmqQlkt5RdI6RIOkHkr48\nhOVK8V61otFFB7CRI2kJsC3wMvAC8CvgxIh4ISLGFZmtIiLOyWO1Vet/BGiI5zqAoCp3USR1ApdE\nxIVDXUdEnFDjtpYAfx8R16flyvJetRzvMTSXAA5PncA+wBuAQX+TK6HCv3FKKuRLlpJhrGJYnZOk\nwXyGBA3wXtnA3DE0qYhYCvwaeB2ApHWSpqTpV0n6pqSHJS1LQwGbVJaVdJSkLknPSVok6Z1p/paS\nLpS0VNJjks6qfDCkde2Tpj+atvea1P6kpCvTdPWwzyaSLpW0QtIzkm6TtO1A2+qPpPa07UquTklf\nlfQ7Sc9L+o2kraoev7+k36ftd0l6e9V9x0q6Jy23WNLxVfd1pFyfl/QE0Os3bknHVa3jbklTq+7e\nW9ICSc9K+omkV6Vl2iT9QtKTklZKmiNp+6p1dkr6mqSbyPYMp/SXta/3VNLZwFuB76Uhne+kx+4p\naa6kpyXdJ+kDVeuZmf69XC1pNXBQmndWun/rlP2ZtPxvU991CbATMCdt63O9vFcTJF0s6fH0vK8c\n6P22nESEb01yAx4C3pGmdwT+BJyZ2uuAKWn628BsoA3YHLgK+Hq6bz/g2ar1bAfskaavBH4AbAps\nA9wKHJ/umwV8Nk3/J/AA8I+p/WPg5DR9BvDjNP2ptO1NyL5J7g2MG2hbvTzvM8iGQwDa03Mdldqd\nKctuaTvzgHPSfdsDK4BpqX1Iam+V2u8GdknTbyP7EN47tTuAvwLnAGOATXrJ9QHgMWDf1N4V2ClN\nLwFuASYB44F7gE+l+yYAR6e8mwP/A1xZtd7OtPxryL7cjR4ga3/v6Tyy4Z3KuscCjwLT07qnAk8B\nr0n3z0zrenNqvwq4GPhqap+T3reN0u2AHv8+D65q93yvfglcBmyZntNbi/4/1ao37zE0FwGzJT0D\n3Ej2AfL1bg+QBBxH9iH+bESsJvvP/KH0kE8CF0bEdZDteUTE/ZImAu8C/m9E/DkingIuqFruBqDy\nbfvAtM5K+23p/uqcAC8BWwGvjsz8iFhVw7YGI4CLI2JRRPyF7EO28q39Y8DVEfHr9FyvBW4H/i61\nr46Ih9L0b4FryL5hV6wDTo+Iv6Z19/QPwHkRcUdax+LIxtUrub4TEcsi4hlgTiVXRKyMiCsj4i/p\n/fk6G17LyrIzI+LeiFgXEWsHyNrre1q1vurhncOBhyJiVlp3F3AFWSdXMTsibk7rWtPjOb8ETAba\nI+LliLipl9flFSRNBqaRfZl4Lj2nG2tZ1kaei8/NJYCjIhX3+rANsBlwhzYMTYsNw4o7kH1z62ln\nsm/GT1QtNwqofND9FvimpElk3xR/BpwhaWdgy/QB09MlZHs2P5HUBlwKfKmGbQ3WsqrpP5N9C688\npw9IOqLq/tHA9QCS3gWcDrw6bX8z4I9Vj30qIl7qZ7s7AIsHkWu7tN3NyPbq3km2NwGwuSRFRKUm\n8Gj1igbI2td7WlFdZ9gZeFP6clExmmyvr/LYx3pZR+WN+gbZHtw16b37z4g4r59tV+wIrIyI52p4\nrOXMHUPrWUH2IfTaiHiil/sfJRt26W3+GrJhlnU974yIRZJeBD4D3JC++S8Djifbe1n/0Kpl1gJf\nBb6aOpCrgfvT3z631YuhFlAfIRuCOr7nHWm8/3/J9ip+HhEvpzHv6m/XA223r9dyIKcAuwP7RcST\nqS5xZ9p2ZZvrt11D1v5y9HwOj5C9f4cNITdpD+dzwOckvQ64XtJtETGvl21VexSYIGlLdw7F81BS\ni0kftD8ELpC0DYCk7SVVPgguBI6VdLCkUem+PVIncg3wLUnj0n27Snpb1epvAE5kw7BRZ482VH2w\npgLuXpI2AlaRjdm/HBHLatgWva1zkPdfChwh6TBJGykrhnekQu/G6bYCWJe+kQ/2w/JHZB+Q+6QC\n7G6Sdqphuc3JOu/nJE0g2xPo7zkNlLXX9zTdt5ys9lHxC2B3SR+TNCbd3ihpz162+4oskg5Pz1PA\n82Q/na507j23tV769/Ur4N+UFd/H9PN+W87cMbSO6m9rpwKLgFskPQfMJfuGSkT8ATiWbCjjWbIP\n98qH2SfIPoDuAVaSDRdNqlrvDWQfar/to13JUckyKa3jubTOTrLhpVq21fO5RY92X899/WMj4jHg\nKOCLwJNk35ZPARQRq4CTyGoSK4EPAz/vZ72vDBVxOXA28N9kH5JXsGFoqL/ncAFZ0X0F8HuyD8w+\nn9NAWQd4T/8f8P70K6AL0jf+w8jqOY8DT5DVizbuJWdv2Xcj+/e0KmX/fkRUvhicA3w5/WLpsz2f\nB/Bxsi8H95F1Iie98mWyetCGIcscVi59gWz3dh1wF9k/zrHAT8nGMpcAx0TEs7mFMDOzQcltj0HZ\n6ReOA/aJiL3ICpIfAk4D5kbE7sB1qW1mZg0iz6Gk58l2CzdTdlToZsBS4Eiy37yT/r4nxwxmZjZI\nuXUMEbES+FeycdulwLMRMReYGBHL08OWAxPzymBmZoOX51DSrsA/kR3duB3Z77A/Vv2Y9Jvswk8k\nZmZmG+R5HMMbgN9HxNMAkq4A3gwskzQpIpalox2f7G1hSe4wzMyGICKGdbLCPGsM9wH7S9o0/ab5\nELKfHs4hOw8L6e/svlZQ7/ODjOTt9NNPLzxDK2Z3/uJvzj/423e+E5xwwsisayTktscQEQsk/Zjs\n3DPryI7c/E+y86//j6RPkn6umleGIi1ZsqToCENW5uzg/EVz/sFbvBh27fXQv2LkekqMiDgfOL/H\n7JVkew9mZkbWMXR0FJ1iAx/5nJMZM2YUHWHIypwdnL9ozj94jbbHkOuRz8PR/USSZmbNad06GDsW\nVqzI/g6XJKKBi88trbOzs+gIQ1bm7OD8RXP+wVm6FNraRqZTGCnuGMzMCtRow0jgoSQzs0JddBHc\ncAPMmjXwY2vhoSQzs5JbvBh2G8rlnHLkjiEnZR5nLXN2cP6iOf/gLFrUeENJ7hjMzArkGsMguMZg\nZq1g/Hh44AHYeuuRWZ9rDGZmJbZyZXYcw1ZbFZ2kO3cMOSnzOGuZs4PzF835a1cZRtKwvt+PPHcM\nZmYFacT6ArjGYGZWmLPPhlWr4NxzR26drjGYmZVYo+4xuGPISZnHWcucHZy/aM5fu0Y8uA3cMZiZ\nFaYRD24D1xjMzArx5z/DhAmwejVstNHIrdc1BjOzknrwQdh555HtFEaKO4aclHmctczZwfmL5vy1\nadTCM+TcMUjaQ9L8qttzkk6SNEHSXEkLJV0jqS3PHGZmjaaRO4a61RgkjQIeB/YDPgOsiIjzJZ0K\njI+I03o83jUGM2taJ54Ir341nHzyyK63bDWGQ4BFEfEocCRQuSzFLOA9dcxhZla4Rt5jqGfH8CHg\nsjQ9MSKWp+nlwMQ65qiLMo+zljk7OH/RnL82Ld8xSNoYOAL4Wc/70niRx4zMrGWsXQuPPAK77FJ0\nkt7VpcYg6SjghIiYltr3AR0RsUzSZGBeROzZY5mYPn067e3tALS1tTF16lQ6OjqADb2622677XbZ\n2pdd1snJJ8OTTw5/fZ2dncycOROA9vZ2zjzzzGHXGOrVMfwE+FVEzErt84GnI+I8SacBbS4+m1mr\nuPba7AR68+aN/LpLUXyWNJas8HxF1exzgUMlLQQOTu2mUunRy6jM2cH5i+b8A2vk+gLA6Lw3EBEv\nAFv3mLeSrLMwM2s5jd4x+FxJZmZ19r73wQc/CMccM/LrLsVQkpmZddfoewzuGHJS5nHWMmcH5y+a\n8/cvwh2DmZlVeeop2HhjaGvgM8S5xmBmVkc335ydH+m22/JZv2sMZmYls2hRY17Os5o7hpyUeZy1\nzNnB+Yvm/P1r9PoCuGMwM6urMnQMrjGYmdXRW94C550Hb31rPut3jcHMrGTKsMfgjiEnZR5nLXN2\ncP6iOX/fVq3KbpMn57aJEeGOwcysTh58EKZMAQ1roCd/rjGYmdXJFVfArFnw85/ntw3XGMzMSqQM\n9QVwx5CbMo+zljk7OH/RnL9vixa5YzAzsyqLFzf+Uc/gGoOZWd3ssgvMnZtv5zASNQZ3DGZmdfDS\nSzBuHKxeDWPG5LcdF58bWJnHWcucHZy/aM7fu4cfhu23z7dTGCm5dwyS2iRdLuleSfdIepOkCZLm\nSloo6RpJDXxmcjOz4SvLL5KgDkNJkmYBN0TERZJGA2OBLwErIuJ8SacC4yPitB7LeSjJzJrG978P\nd90F//7v+W6n4YeSJG0JvDUiLgKIiLUR8RxwJDArPWwW8J48c5iZFa1Mewx5DyXtAjwl6WJJd0r6\noaSxwMSIWJ4esxyYmHOOuivzOGuZs4PzF835e1emjmF0Hda/D3BiRPxB0gVAtyGjiAhJvY4ZzZgx\ng/b2dgDa2tqYOnUqHR0dwIY3r1HbXV1dDZXHbbfdLra9YAHsuuvIr7+zs5OZM2cCrP+8HK5cawyS\nJgE3R8QuqX0g8AVgCnBQRCyTNBmYFxF79ljWNQYzawrr1sHmm8OTT2Z/89TwNYaIWAY8Kmn3NOsQ\n4G5gDjA9zZsOzM4zh5lZkZ54ArbYIv9OYaTU4ziGzwD/JWkB8LfA2cC5wKGSFgIHp3ZTqezqlVGZ\ns4PzF835X6lM9QXIv8ZARCwA3tjLXYfkvW0zs0ZQto7Bp8QwM8vZl7+cHfF8+un5b6vhawxmZla+\nPQZ3DDkp8zhrmbOD8xfN+V/JHYOZmXVTto7BNQYzsxw98wzstBM8/zxoWCP/tXGNwcyswVWu2laP\nTmGkuGPISZnHWcucHZy/aM7fXdmGkcAdg5lZrsrYMbjGYGaWo09+Et70Jjj++PpszzUGM7MGV8Y9\nBncMOSnzOGuZs4PzF835u3PHYGZm6/3lL/DUU7DjjkUnGRzXGMzMcnLvvXDUUbBwYf226RqDmVkD\nW7SofMNI4I4hN2UeZy1zdnD+ojn/BmWsL4A7BjOz3FSOei4b1xjMzHLy7nfDCSfAEUfUb5uuMZiZ\nNTAPJVk3ZR5nLXN2cP6iOX/m5Zfh4Ydhl11GZHV1lfs1nyUtAZ4HXgb+GhH7SZoA/BTYGVgCHBMR\nz+adxcysXh57DLbeGjbdtOgkg5d7jUHSQ8C+EbGyat75wIqIOF/SqcD4iDitx3KuMZhZaV1/PZx5\nJtxwQ323OxI1hn73GCSNAQ4D3ga0AwE8DPwW+E1ErK1xOz1DHgm8PU3PAjqB0zAzaxJlrS9APzUG\nSV8B/gAcDtwHXET2IX4/cARwu6Qv17CNAK6VdLuk49K8iRGxPE0vByYOMX/DKvM4a5mzg/MXzfkz\nZT24DfrfY1gAfK2P8ZyLJI0i6zQGckBEPCFpG2CupPuq74yIkNTrmNGMGTNob28HoK2tjalTp9LR\n0QFsePMatd3V1dVQedx22+36tm+5BU44If/tdXZ2MnPmTID1n5fDNegag6RNgcMj4meD3ph0OrAa\nOA7oiIhlkiYD8yJizx6PdY3BzEpr773hhz+EN7yhvtut23EMkkZL+jtJl5L9iuhDNS63maRxaXos\nWb3iLuAqYHp62HRg9iBzm5k1rIjmrTFIUoek/wAeAo4FDgV2iYj31bj+icCNkrqAW4FfRMQ1wLnA\noZIWAgendlOp7OqVUZmzg/MXzflhxQoYPRrGjx9+niL0V2N4FLiHrOj82Yh4QdJDEfFirSuPiIeA\nqb3MXwkcMtiwZmZlUOa9BeinxiDpArKflS4gOxhtDvCniKjLcXyuMZhZWf3Xf8GcOfCTn9R/27nW\nGCLin4DdgO8C7yD7meo2kj4oafPhbNTMrJmVfY+h3+JzRKyLiOsj4jhgCvBh4Ciyg9ysH2UeZy1z\ndnD+ojl/k3cM1SLipYiYExEfAXbIMZOZWamV+eA2qOE4BklHAF8lOyVGpVgdEbFFrsFcYzCzkpo0\nCW6/HXYo4Cv0SNQYaukYFgNHkxWe1w1nY4PhjsHMymj1athmG3jhBRhVwIUN6nWA22PA3fXsFJpB\nmcdZy5wdnL9orZ7/wQdhypRiOoWRUsv1GE4FfiVpHvBSmhcR8a38YpmZlVPZC89Q21DSXGAV2aks\n1u81RMSZuQbzUJKZldA3vwmPPw7f/nYx28/9egzJ5Ig4dDgbMTNrFYsXw+teV3SK4allFOxqSe/M\nPUmTKfM4a5mzg/MXrdXzN8NQUi0dw6fJagx/kbQq3Z7PO5iZWRk1Q8eQ+zWfh8o1BjMrm7/+FTbf\nHFatgo03LiZDrj9XlTRgn1fLY8zMWsXDD8PkycV1CiOlv6Gkr0v6haTjJe0jabKk7STtK+lTkn4J\nnF2voGVT5nHWMmcH5y9aK+dvhmEk6OdXSRHxQUm7kV2t7Wxg53TXw8DvgM9ExIP5RzQzK4fFi2G3\n3YpOMXyuMZiZjZBTToGJE+Hzny8uQ92u+WxmZgNrlqEkdww5KfM4a5mzg/MXrZXzu2OokaSNJM2X\nNCe1J0iaK2mhpGskteWdwcwsbxHZCfSaoWOo5VxJ10XEOwaa18/ynwX2BcZFxJGSzgdWRMT5kk4F\nxkfEab0s5xqDmZXGE0/A618PTz5ZbI68j2PYVNJWZNd5nlB1awe2rzHgDsC7gR8BlaBHArPS9Czg\nPUPMbmbWMJplGAn6H0r6FHA7sAdwR9XtKuB7Na7/28A/U3VWVmBiRCxP08uBiYMJXBZlHmctc3Zw\n/qK1av6yX86zWn/HMVwAXCDppIj4zmBXLOlw4MmImC+po49thKQ+x4tmzJhBe3s7AG1tbUydOpWO\njmxVlTevUdtdXV0Nlcdtt93Ot33ddbDrrvXffmdnJzNnzgRY/3k5XDUdxyDpLXS/5jMR8eMBlvk6\n8HFgLbAJsAVwBfBGoCMilkmaDMyLiD17Wd41BjMrjY98BKZNg098otgcdTmOQdKlwDeBA8k+1Cu3\nfkXEFyNix4jYhezo6esj4uNkQ1HT08OmA7OHmN3MrGE0y1HPUNvPVfcFDoiIT0fEZyq3IWyr8vX/\nXOBQSQuBg1O76VR29cqozNnB+YvWqvmbqfhcyxXc/gRMBpYOdSMRcQNwQ5peCRwy1HWZmTWa556D\nNWtg222LTjIyajmOoROYCtwGrEmzIyKOzDWYawxmVhJ33gnHHgsLFhSdpH7XfD4j/Q02HIvgT2wz\ns6SZhpGghhpDRHQCS4Axafo2YH6uqZpAmcdZy5wdnL9orZi/5ToGSccDPwP+I83aAbgyz1BmZmXS\nTAe3QW01hgXAfsAtEbF3mndXROyVazDXGMysJA46CL74RTj00KKT1O96DGsiolJ0RtJoXGMwM1uv\n5YaSgBskfQnYTNKhZMNKc/KNVX5lHmctc3Zw/qK1Wv41a2D5cthpp3zyFKGWjuFU4CngLrIT610N\nfDnPUGZmZfHQQ1mnMLqW33iWRL81hjRs9KfezmWUN9cYzKwMfvlL+O534de/LjpJJvcaQ0SsBe6X\ntPNwNmJm1qyarb4AtQ0lTQDulnS9pDnpdlXewcquzOOsZc4Ozl+0VsvfjB1DLaNiX2bDEc8VHuMx\nMyPrGA4+uOgUI6uWGsPdEbFH/SKt37ZrDGbW8PbcEy6/HP7mb4pOkqlXjeE+1xjMzF7p5ZdhyRKY\nMqXoJCPLNYaclHmctczZwfmL1kr5H38cJkyAzTbLL08RaqkxfCX3FGZmJdRMV22rVtM1n4vgGoOZ\nNbof/QhuugkuvrjoJBvU5XoMklaz4VdIGwNjgNURscVwNmxmVnbN+FNVqO16DJtHxLiIGAdsCrwX\n+Lfck5VcmcdZy5wdnL9orZS/ZTuGahGxLiJmA9MGeqykTSTdKqlL0j2SzknzJ0iaK2mhpGsktQ0x\nu5lZoZq1Y6jlegzvq2qOAvYF3h4Rbx5w5dJmEfFiOh7id8DngCOBFRFxvqRTgfERcVovy7rGYGYN\nKwLGj886h622KjrNBvW65vMRbKgxrCW7zOdRtaw8Il5MkxsDGwHPkHUMb0/zZwGdwCs6BjOzRvb0\n09nfCROKzZGHWmoMMyLi2HQ7LiLOjogna1m5pFGSuoDlwLyIuBuYGBHL00OWAxOHnL6BlXmctczZ\nwfmL1ir5K8NIGtZ388ZUy6+SZgEnR8SzqT0e+NeI+PuBlo2IdcBUSVsCv5F0UI/7Q1Kf40UzZsyg\nvb0dgLa2NqZOnUpHRwew4c1r1HZXV1dD5XHbbbdHtn3ttbDrrsXn6ezsZObMmQDrPy+Hq5YaQ1dE\nTB1o3oAbkr4C/Bn4B6AjIpZJmky2J/GK6z24xmBmjeyss+DFF+Gcc4pO0l29rvksSROqGhPI6gUD\nLbR15RdHkjYFDgXmA1cB09PDpgOzBxvazKxozXrUM9TWMfwrcLOksyR9DbgZ+EYNy00Grk81hluB\nORFxHXAucKikhcDBqd10Krt6ZVTm7OD8RWuV/M36U1WoocYQET+WdAfZh3gAR0fEPTUsdxewTy/z\nVwKHDCGrmVnDaOaOwedKMjMbpBdfzI5deOEFGDWow4TzV68ag5mZVXnwQWhvb7xOYaQ06dMqXpnH\nWcucHZy/aK2Qf9Gi5h1GAncMZmaD1sz1BXCNwcxs0D796exazyedVHSSV3KNwcysAM2+x+COISdl\nHmctc3Zw/qK1Qv5mPrgN3DGYmQ3K2rXw6KPZr5KalWsMZmaD8OCDcNBB8PDDRSfpnWsMZmZ11uz1\nBXDHkJsyj7OWOTs4f9GaPb87BjMz66bZD24D1xjMzAbl6KPhIx+BD3yg6CS9c43BzKzOPJRkQ1bm\ncdYyZwfnL1oz54/IfpXkjsHMzABYvhw22QS23LLoJPlyjcHMrEY33QSnnAK33FJ0kr65xmBmVket\nUF8Adwy5KfM4a5mzg/MXrZnzu2MYAZJ2lDRP0t2S/iTppDR/gqS5khZKukZSW545zMxGQqt0DLnW\nGCRNAiZFRJekzYE7gPcAxwIrIuJ8SacC4yPitB7LusZgZg1l//3hm9+EAw8sOknfGr7GEBHLIqIr\nTa8G7gW2B44EZqWHzSLrLMzMGlqr7DHUrcYgqR3YG7gVmBgRy9Ndy4GJ9cpRL2UeZy1zdnD+ojVr\n/uefhxdfhEmT6punCKPrsZE0jPS/wMkRsUrasJcTESGp1zGjGTNm0J5Oet7W1sbUqVPp6OgANrx5\njdru6upqqDxuu+328NoPPABTpnQgNUaeSruzs5OZM2cCrP+8HK7cj2OQNAb4BfCriLggzbsP6IiI\nZZImA/MiYs8ey7nGYGYN4/LL4dJLYfbsopP0r+FrDMp2DS4E7ql0CslVwPQ0PR1o8JfazFpds1/O\ns1reNYYDgI8BB0man27TgHOBQyUtBA5O7aZS2dUrozJnB+cvWrPmb5XCM+RcY4iI39F353NInts2\nMxtJixfD+99fdIr68LmSzMxq0N4O113X+HsNI1FjcMdgZjaANWtgiy1g9WoYM6boNP1r+OJzKyvz\nOGuZs4PzF60Z8y9ZAjvs0Pidwkhxx2BmNoBWKjyDh5LMzAb03e/CPffAD35QdJKBeSjJzKwOWm2P\nwR1DTso8zlrm7OD8RWvG/O4YzMysm1Y66hlcYzAz69e6dTB2LKxYkf1tdK4xmJnlbOlSaGsrR6cw\nUtwx5KTM46xlzg7OX7Rmy79oUWvVF8Adg5lZv1qt8AyuMZiZ9euLX4RNNoF/+Zeik9TGNQYzs5y1\n4h6DO4aclHmctczZwfmL1mz53TGYmVk3rdgxuMZgZtaHlSthl13g2WdBwxq1rx/XGMzMclTZWyhL\npzBScu0YJF0kabmku6rmTZA0V9JCSddIasszQ1HKPM5a5uzg/EVrpvytOIwE+e8xXAxM6zHvNGBu\nROwOXJfaZmYNpxUPboM61BgktQNzImKv1L4PeHtELJc0CeiMiD17Wc41BjMr1LHHwlveAscdV3SS\n2pW1xjAxIpan6eXAxAIymJkNyENJBUi7BE25W1DmcdYyZwfnL1oz5W/VjmF0AdtcLmlSRCyTNBl4\nsq8Hzpgxg/b2dgDa2tqYOnUqHR0dwIY3r1HbXV1dDZXHbbfdHlx7zRp4+ukOdtihMfL01e7s7GTm\nzJkA6z8vh6uIGsP5wNMRcZ6k04C2iHhFAdo1BjMr0t13w3vfC/ffX3SSwWn4GoOky4DfA3tIelTS\nscC5wKGSFgIHp7aZWUNptau2Vcu1Y4iID0fEdhGxcUTsGBEXR8TKiDgkInaPiMMi4tk8MxSlsqtX\nRmXODs5ftGbJ36r1BfCRz2ZmvWrljsHnSjIz68W0aXDiiXD44UUnGZyGrzGYmZVVK+8xuGPISZnH\nWcucHZy/aM2Qf+1aeOSR7Myqrcgdg5lZD48+Cttum13SsxW5xmBm1sO118LXvgZl3PlxjcHMLAet\nXF8Adwy5KfM4a5mzg/MXrRnyu2MwM7NuWvmoZ3CNwczsFaZOhQsvhH33LTrJ4I1EjcEdg5lZlQgY\nNw4eewzaSnjhYRefG1iZx1nLnB2cv2hlz3/llZ286lXl7BRGijsGM7MqS5e2duEZPJRkZtbNJZfA\n1VfDZZcVnWRoPJRkZjbCWv2nquCOITdlHmctc3Zw/qKVPf9NN3W6Yyg6gJlZI3GNwTUGM7NuJk6E\n+fNhu+2KTjI0rjGYmY2gVauy2+TJRScpVmEdg6Rpku6T9ICkU4vKkZcyj7OWOTs4f9HKnP/BB2Hi\nxE40rO/b5VdIxyBpI+B7wDTgtcCHJb2miCx56erqKjrCkJU5Ozh/0cqcf9EiGDu2vPlHSlF7DPsB\niyJiSUT6sSqxAAAJkklEQVT8FfgJcFRBWXLx7LPPFh1hyMqcHZy/aGXOv3gxjBtX3vwjpaiOYXvg\n0ar2Y2memVlhFi+G8eOLTlG80QVtt6afGx1xRN4x8jN//hLuuKPoFENT5uzg/EUrc/4//AH22mtJ\n0TEKV8jPVSXtD5wREdNS+wvAuog4r+ox/q2qmdkQlPK025JGA/cD7wCWArcBH46Ie+sexszMuilk\nKCki1ko6EfgNsBFwoTsFM7PG0LBHPpuZWTHq/qukWg5sk/SddP8CSXsPZtm8DTP/Ekl/lDRf0m31\nS90tW7/5Je0p6WZJf5F0ymCWrYdh5i/D6//R9O/mj5JukvS3tS6bt2FmL8Nrf1TKP1/SHZIOrnXZ\nehhm/sG9/hFRtxvZsNEioB0YA3QBr+nxmHcDV6fpNwG31LpsI+dP7YeACfXMPIT82wBvAL4GnDKY\nZRs5f4le/zcDW6bpaY3y73842Uv02o+tmt6L7Firwl/74eYfyutf7z2GWg5sOxKYBRARtwJtkibV\nuGzehpp/YtX9RR5sP2D+iHgqIm4H/jrYZetgOPkrGv31vzkinkvNW4Edal02Z8PJXtHor/0LVc3N\ngRW1LlsHw8lfUfPrX++OoZYD2/p6zHY1LJu34eSH7PiNayXdLum43FL2bTgHFjbCQYnDzVC21/+T\nwNVDXHakDSc7lOS1l/QeSfcCvwJOGsyyORtOfhjk61/vXyXVWulu1FNYDTf/gRGxVNI2wFxJ90XE\njSOUrRbD+aVBI/xKYbgZDoiIJ8rw+ks6CPh74IDBLpuT4WSHkrz2ETEbmC3prcAlkvbMN1bNhpQf\n2CPdNajXv957DI8DO1a1dyTr+fp7zA7pMbUsm7eh5n8cICKWpr9PAVeS7R7W03Bew7K8/n2KiCfS\n34Z+/VPR9ofAkRHxzGCWzdFwspfmta9IH5qjgQnpcaX6t1/JL2mr1B7c61/nAspoYDFZAWVjBi7e\n7s+G4tuAyzZ4/s2AcWl6LHATcFij5a967Bl0Lz6X4vXvJ38pXn9gJ7Ii4/5Dfe4NmL0sr/2ubPgJ\n/z7A4kZ47Ucg/6Bf/7o9sarw7yI76nkR8IU071PAp6oe8710/wJgn/6WLUt+YEp6M7uAPzVqfmAS\n2Vjmc8AzwCPA5mV5/fvKX6LX/0fA08D8dLutv2XLkL1Er/3nU775wI3AGxvltR9O/qG8/j7AzczM\nuvGlPc3MrBt3DGZm1o07BjMz68Ydg5mZdeOOwczMunHHYGZm3bhjsBEjqV3SXWn69ZLeVXSmekqn\nPX5NVbtT0r4jtO4zKqcRl3SmpHcMYtkOSXMGub1tJf1S0qaSnpY0rsf9syUdI+lISV8ZzLqt8blj\nsLzsTXYUeENSMsKrPRp4bVV7JA8SWr+uiDg9Iq4bwXX35kRgZkT8Gfg12XMDQNKWZOdBugr4BfA+\nSWNyzmN15I7B+iTpHEmfrmpXf2v9hqS70sU/jumx3Bjgq8AH04VBjpH0Rkm/l3RnuojL7umxm0n6\nH0l3S7pC0i2Vb9mSDkvL3JEeM7aXjMdJuk1Sl6TLJW2a5k+UdGWa3yVp/7RHc7+kWcBdwI69PQ9J\nkyX9NmW/S9IBkkZJmln12H/qkeMtwBHAN9JznJLu+oCkW9N2D0yP3Sht9zZlF1Y5vo/X/0tpuRvJ\nToYWaf5MSe9L0+9I2/ujpAslbZzmT5N0r6Q76P6hPlbSRSnTnZKO7OPtfz/wyzR9GfChqvuOBn4d\nEX+JiHXAzcBhfazHyqiIQ7t9K8cNmAp0VrXvJjvV7/uAa8jOIrst8DAwkew8Lnelx04HvlO17Dhg\nozR9CHB5mv4c8IM0/Tqy6yjsA2wN3ABsmu47FfhKLxknVE2fBZyYpn8KnJSmRwFbpHwvA/ul+b09\nj0nAKcAX02NEdkqNfYFrqra1ZS9ZLgbeW9WeB3wjTb8LmJumjwe+lKZfBfwBaO+xrn2BPwKbpNfu\nAeCz1dtJ9z0C7JbmzwJOrpq/a9VrcVWa/jrw0TTdRnaKhc16bHtS5X1M7Y2BZcD41P418O6q+48F\nziv636tvI3fzHoP1KSK6gG3TN+jXA89ExOPAgcB/R+ZJsg/wnmdrFN1PP94GXJ5qEN9iw5DLAWQX\nHSEi7ib7MITsBISvBX4vaT7wCbKTtPW0l6QbJf0R+GjVeg8CfpDWuy4ink/zH46IyqUND+jlebwR\nuA04VtLpwN9GxGqyE5hNUXbZ1ncClfX11HN46or0906yjgmyb9efSM/rFrIzeO7WY7m3AldE9q18\nFdmwTc/t7AE8FBGL0rxZwNuq5i9O8y+tynUYcFra9jyyjqn6rJ0AOwNPVBoR8VLa/gckbU32heE3\nVY9fWvXcrAnU+3oMVj4/IxtWmET6ACcb0uj5ATjQePpZwHURcbSkdrIPpYqe66q050bERwZY70yy\nUzzfJWk68PZ+1gvwQo/2K55HRNyo7Hz2hwMzJX0rIi5JneM7gX8EjiG7GE1PPV+HNenvy3T//3Zi\nRMzt60nxyte4t+fSc1t91Ux6zn9vRDzQz7Z7W+Yy4Ctp/uyIeLnqvlG9ZLES8x6DDeSnwIfJOoef\npXk3ktUPRim78MfbyL5lV3uebAikYguyb5YAM6rm30T2IYuk15JdqzbIvkkfIGnXdN9YSa/uJd/m\nwLJU1/hY1fzrgBPSshtJ2qKXZXt9HpJ2Ap6KiB+RnTF0H2Xntd8oIq4g+4Dcp5f1rUrPcyC/AT4t\naXTKt7ukzXo85rfAeyRtouwXQYf3uD/IhoHaK68R8HGgE7gvza/UOT7cY9vrr+wlae9e8lWG1Kp1\nArsD/4esk6g2OS1jTcIdg/UrIu4h+/B9LCKWp3lXkg35LCD7AP7nNBQDG745zgNeWyk+A+cD50i6\nk+zC5pXH/RuwjaS7yfYq7gaei4gVZB3IZZIWAL9nw9Woqn2F7PrCvwPurZp/MnBQGmK6Haj8jLT6\n1z19PY8OoCtlPQa4gKy2Mi8NwVwCnNZLlp8A/5yK5VN6ub+y7R8B9wB3pqG1H9Bj7z0i5pN1ygvI\nLpHZs+MlItaQje//LD3PtcC/p/nHA79MxeflVds+CxiTitV/As7sZb3LyC7yMrZqXpB9MZgQETf0\nWGQ/so7MmoRPu22FkjQKGBMRa9I337nA7hGxtuBoLU3SGcC9EfHTAR43iqx+8ga/Z83DNQYr2ljg\n+jQUJOAEf8A0hO+TFbP77RjIhrgu93vWXLzHYGZm3bjGYGZm3bhjMDOzbtwxmJlZN+4YzMysG3cM\nZmbWjTsGMzPr5v8Ds1Mla6CkMg8AAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x7f0aca60fe50>"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EX2_6 PG-2.28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"%matplotlib inline\n",
"from matplotlib.pyplot import plot, xlabel, ylabel, show, grid, title, subplot\n",
"If=25e-3 #current at Q-point\n",
"x=np.array([ 0, 0.5, 0.6, 1, 1.1 ]) #x-coordinate\n",
"y=np.array([ 0 , 1 , 5, 25, 30 ]) #y-coordinate\n",
"subplot(1,3,1)\n",
"plot(x,y)\n",
"x1=np.array([0.5, 1 , 3]) #x-coordinate\n",
"y1=np.array([ 31, 25, 0]) #y-coordinate\n",
"subplot(1,3,2)\n",
"plot(x1,y1)\n",
"x2=np.array([ 0, 1] )\n",
"y2=np.array([25 ,25] )\n",
"subplot(1,3,3)\n",
"plot(x2,y2)\n",
"xlabel('Vf (volts)') \n",
"ylabel('If (mA)') \n",
"title(\"Piece-wise linear characteristic\")\n",
"grid()\n",
"show()\n",
"print \"Q-point is denoted by the intersection of two lines as shown in the plot\"\n",
"delta_If=10e-3 #from the graph plotted\n",
"delta_Vf=0.9 #from the graph plotted\n",
"s=delta_If/delta_Vf #slope\n",
"print \"Therefore load resistance is the reciprocal of the slope \"\n",
"Rl=1/s #load resistance\n",
"print \"\\n required load resistance is %.0f ohm\"%(Rl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEZCAYAAACq1zMoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYFNXVuN/DqogKuLArLgHZB1EUURyNQVxZ9EONghCU\nmBgUP0kAN1AS10TELCZB/LkQUROVaIiCCySADEFkC8iHCyOjMiCCkVGDMHN+f9waaJqe3qa7q7r6\nvM/TT9dy76lTdev26XvOXURVMQzDMIxMU8dvBQzDMIxwYgbGMAzDyApmYAzDMIysYAbGMAzDyApm\nYAzDMIysYAbGMAzDyApmYAzDJ0Rkh4i081uPaETkKE83yaDMdiJSJSJ1vP2/i8jQTMnPBiIySUSe\n8luPTCAiZ4jIujTzpl1W9dLJZBhGcohIKXAkUAl8BbwC/ERVv1LVg/3UrSZUdSOQVd1U9fxsys8Q\ngRgkKCLDgZGqeka6MlR1AXBCEteaBBynqnsMSm3KylowhpFdFLjQMyYnAicBt/mrUmEiIqn+oc5k\nC65upmSlcW3fGhJmYAwjR6jqp8CrQGcAz2V0rLfdUER+KSIfiUi5iDwiIgdU5xWRASKyQkT+IyLv\ni8i53vFDRWS6iHwqIh+LyORqN1Q0InKniDzsbdcXka9E5H5v/0AR+a+INInhzhouIh+IyJci8qGI\nfD9C5g9EZK2IbBORV0XkqGSehYjMF5GREfIXisgDnpwPRaR/RNoa71FEjhORN0Vkq4h8JiIzROTQ\niLylIvIzEVkF7Ij1bESks4i8JiKfe89+QnWRAQ1E5Anv3v8tIj0j8o33yuJLEVkjIgMjzg0XkUUi\n8qCIbAUmisixCXRtKyIviMgWL82vReQE4PdAb89tuc1LW+P7IiLF3nP6mYhsAqZ7x8oirjXOS/Ol\niKwTkbO9Zz4BuMy71vLosvL2r/XKvPq+e9RUzmZgDCP7CLgfEOA8YHmMNPcCxwPdve/WwB1evl7A\nE8DNqnoo0Bco9fI9DnwLHAf0APoB19Sgx3yg2Ns+GdjkyQLoDbyrql/so7jIQcBUoL+qHuKlW+Gd\nG4D7QRoEHA4sAGbGexARKPu6oHoB64DDgPuB6RHnEt3jL4CWQEegLTAp6lqX4557E1Wtirq/g4HX\ngb97Mo4H3qg+DVzs3dOhwEvAbyKyvw+c7j2XO4EZItI86p4+wLlI7/bkxdRVXAvnb8AG4Ghc+c9U\n1XXAD4HFqnqwqjbzZNf4vng0B5oCR3n5I++5A3A9cJKnez+gVFVf9fR8xrtWteHYU1Yi8j/ARGCo\nl/ci4HNqQlXtYx/7ZOmDMwQ7gO3e9m+Aht65KuBY74enAjg2Il9v4ENv+w/Ar2LIbg78Fzgg4tgV\nwJs16HIg8A3QDBiHMw5lwEG4H8iHvHTtPN3qeOe2A4OBA6PkvQL8IGK/Di7O1DbGtffI9PbnVecF\nhgPvRaRt5KU9Mo17HAi8E7G/ARgep3yuAJbVcG4SMDdivxPwdRxZy4GLI+7powTvxh5dvfLeUv18\notINBxZE7Cd6X4qBnUCDiPPFQJm3fTywGfguUD/GPT8VdSyyrOYAo5N9/y3IbxjZRYEBqvpmnDRH\n4H5Ul8nejlvCXg9DG2B2jHxHA/WBTRH56gAbAURkDe4fLLgWyCIReRs4E9dy+QVQBPTx9h/eT3nV\nr0TkMmAsztWyCNeS+j/v+lNF5FdR2VrjDFcqlEdc82vvfhrjWkbx7rE5roV1Oq5jQh1gW5TseLq0\nBT6Mc35zxPbXwAEiUkdVq0RkGHATznhW63tYTddNoGtbnEHap4VVA4neF4DPVPXbWJlV9X0RGYMz\nJp1FZA7wv6q6KYlrt8G1ypLCXGSG4T9bcS2LTqra1Ps0UeeCAPdDdXyMfGW4f6qHReQ7VFW7Aqhq\nZ3WujoNVdZGX5x+4f649gKXefn+cO+efsZRT1bmq2g9ogXNjTfNObQRGRVy7qaoepKoltXscyd8j\nzqVTCXRR5z4cyv6/a/F6g23EtSJjUWM+ETka+CPO1dRMVZsC/2bfjgHR+ePpWgYcJbE7A0TLSfS+\nxNUdQFVnquuVdrSX9r5k8lHzuxgTMzCG4TPev9ZpwEMicgSAiLQWkX5ekunACC8QW8c718H7xzkX\neFBEDvbOHScifWNfCXAGZRiwRlV34eIy1+DcK/v50kXkSHEdDA4CduFcYJXe6d8Dt4hIJy/toZ6P\nPmMkcY+NPZ2+FJHWwE9TvMTfgJYicqMXOD/Yi3lB/F5kB+F+jLcCdURkBNAlwbXi6fovXEzsXhFp\nJCIHiMhp3rnNQBsRqQ9JvS9xEZH23rvUEGe8/8veMi0H2onUOAbqUWCsiJwojuMlTscOMzCG4R+R\n/xbH4YLGJSLyH+A1oD2Aqi4FRgBTgC9wRqG6Ug8DGgBrce6WP+NaGjWxGDiAva2Vd3H/hqNbL9W6\n1cG5gT7BBXPPAH7k6TUL98/3GU/n1cC5Sd5v9PHoc5H78e7xTlz37/8ALwPPx7nO/hdWrQC+hwtW\nbwLWs7cjRI16qepa4Fe451mOMy4LE9xTjbqqaqWnw/G4VlUZMMTL9wawBigXkS3esRrfl0g9Y+kO\nNATuAT7z7vlwXDwO3LMF+Nxzp+4rQPUvONfq08CXwAu4zgQxES9wE/uk6/b2D0+hBsBfVXWCiDQD\nnsU1r0qBIRrV+8QILnHKdRLu3+xnXtIJ6nqWGD7j9UB7Ehf4VuCPqlrd5Xg08GPcv9DZqjouRv5S\n3A9CJbBLVXtFpzGMTBPXwACISCMv6FYPZ6HH4rrubVXV+0VkHNBUVcdnX10jU9RQrt8Fdqjqg/5q\nZ0QjIi2AFqq6QkQaA8twvZBaALcA56vqLhE5QlU/i5F/A9BTVaMD4IaRNRK6yFT1a2+zAVAX12Xx\nYly/fLzvgTGyGgGmhnKFDI5eNjKHqpar6gpvuwLn2moNXAfc48VTiGVcIrCyNXJKQgPjBdVW4AJN\n81R1DdBcVau7723G9VU38ogayhVgtIisFDdyuomPKho1IG6CzB7AEpzfva+IlHgjrk+qIZsCr4vI\n2yJybW40NQqdZFowVapahOv/3FdEzoo6HyuYZQScGOVaDDwCHIMbG7EJF8Q0AoTnHvsLcKOq7sBN\nWNtUVU/F9Up6roasfdSNzD4PuF5E0p440TCSJemBlqr6HxGZDfQENotIC1UtF5GWuBGo+yAiZnQC\nhKrGdI9ElOtJqjq/+riIPIrr6bIfVraB4EWvJ+mruJ48qOpScXOIHRbd5bh6EJ2qfiYiL+LGvSyI\nTGPlGhxqqq/5RtwWjIgcXu0mEZEDcd35luPm5LnaS3Y1MCtW/mSnE6jpM3HiRF/zB12HpUuVrl0T\n50+2XL1AcjWDcN1OY1Lbe8rk88kXebWRVVVVxdChQxkzZkx0uc4CzvbKsj1uepB9jIs3ruJgb/sg\n3NxTMcs2CPda6PLCRKIWTEvgCXEzkNbBzVHzhrhZNp8TN8NmKXv7axs5ZPFiOPXUtLLWVK5PikgR\nzuW5gahJ8gz/WLRoETNmzKBbt2706LHP5LWPAY+JyGrchJDDAESkFTBNVS/A9TR7wWvx1AP+pKpz\ns6lvaWmpyTPiGxhVXY0bGBR9fBtwTraUMpKjpATOSaMU4pTrsAyoZWSB008/naqqfaepEhHU9R7b\nb7VBdUsDXOBtf4iLqxlGTgn0SP7i4mJf8wddh1q0YAJDJp5PvsjLtG5BZvjw4SbPSDzQMm3BIho2\nf2KQ2LwZTjgBPv8c6iT4m+D9083k6nxWtgHAyjWcZLpc/STQLRijZkpK4JRTEhsXw/CD+fPnmzzD\nDEy+UlICvXv7rYVhGEbNmIssTykuhgkT4Nx4c9d6mCslnFi5hpMwucjMwOQhu3dD06ZQVgZNkpjM\nxX6IwomVazgJk4ExF1kesno1tG2bnHExDD8Ieowj6PLCghmYPMTiL4Zh5APmIstDhg2DM86Aa5Oc\nE9dcKeHEyjWcmIvM8BVrwRiGkQ+Ygckztm51gyw7dvRbE8OomaDHOIIuLyyYgckzliyBXr2gbl2/\nNTEMw4iPxWDyjNtuAxGYPDn5POarDydWruHEYjCGb5SU5P8El4ZhFAZmYPKIykpYutQMjBF8gh7j\nCLq8sGAGJo9YuxaaN4fDDvNbE8MwjMRYDCaPmDYNFi6EJ55ILZ/56sOJlWs4sRiM4QthWGDMMIzC\nwQxMHmEDLI18IegxjqDLCwtmYPKE7dvd7MlduvitiWEYRnJYDCZPmDMH7r0X5s1LPa/56sOJlWs4\nsRiMkXMs/mIYRr5hBiZPCFr8ZedOvzUwgkzQYxxBlxcWzMDkAVVVbg6yTLVgROQAEVkiIitEZK2I\n3OMdbyYir4nIehGZKyI1Lmk2bVpmdDEMI7xYDCYPePdduPBC+OCD9PLH8umKSCNV/VpE6gELgbHA\nxcBWVb1fRMYBTVV1fAx52rKl8v770KhRejoZtcdiMOHEYjBGTslG/EVVv/Y2GwB1ge04A1M9jPMJ\nYGBN+U87DX73u8zqZBhGuDADkwdkI/4iInVEZAWwGZinqmuA5qq62UuyGWheU/4774QHHoAdOzKr\nlxEOgh7jCLq8sFDPbwWMxCxeDKNGZVamqlYBRSJyKDBHRM6KOq8iUqO/5M9/nsSRR8KAAXDHHcUU\nFxdnVkFjP+bPn28/ZEZeETcGIyJtgSeBIwEF/qiqD4vIJOAa4DMv6QRVfTUqr/lzM8CXX0KrVrBt\nGzRokJ6MRD5dEbkd+AZXpsWqWi4iLXEtmxNipFdVZf166NMH1q+Hpk3T081IjrKyMoYNG8aWLVsQ\nEUaNGsWNN96I+x8go4EfA5XAbFUdF51fRPoDD+HcoY+q6n0x0lidDQBhisEkMjAtgBaqukJEGgPL\ncH75IcAOVX0wTl57WTPA6687d9SCBenLiH5hReRwYLeqfiEiBwJzgDuBc4HPVfU+ERkPNKkpyF9d\ntiNHOgOYygJoRuqUl5dTXl5OUVERFRUV9OzZk/Xr1wOcDdwCnK+qu0TkCFX9LDKviNQF/g84B/gE\nWApcoarvRqWzOhsAwmRg4sZgVLVcVVd42xXAu0Br73QoHkDQydICYy2BN70YzBLgZVV9A7gX+J6I\nrMf9cN2bSNDtt7tg/9atGdfRiKBFixYUFRUB0LhxYzp27Fh96jrgHlXdBRBtXDx6Ae+raqmX7hlg\nQDb1DXqMI+jywkLSQX4RaQf0AEq8Q6NFZKWITI83XsKoHdkI8KvqalU9UVWLVLWbqj7gHd+mqueo\nantV7aeqXySS1a4dXHYZ3H9/ZnU0aqa0tJTly5dX77YH+opIiYjMF5GTYmRpDZRF7H/M3j+KhpE1\nkhoH47nH5gM/V9VZInIke+Mvk4GWqjoyKo81t2uJKhxxBKxa5dxQ6ZLt8RKffAJdu8KaNdCyZaau\nYsSioqKC4uJibrvtNgYNGgTwb+BNVb1RRE4GnlXVYyPziMglQH9Vvdbbvwo4RVVHR6WzOhsAwuQi\nS9iLTETqA88DM1R1FoCqbok4/yjwcqy8kyZN2rNdXGw9jVLl/ffhoINSNy657m3UujUMHw733AMP\nP5yzyxYcu3bt4pJLLuGqq65i4MA9Q5Q+Bl4AUNWlIlIlIoep6ucRWT8B2kbst/Xy7cfw4cNp164d\nAE2aNKGoqGhPva1+p2w/s/vV26WlpYQOVa3xg4uzPAlMiTreMmL7JuDpGHnVqB1PPKE6ZEjt5Xhl\nEbesU/nEKtvNm1WbNVPduLH2+hr7U1VVpUOHDtUxY8bsOYbr2flD4E63S3tgo+5fXvWAD4B2uIG1\nK4COMdJlTN958+ZlTFahyct0ffXzk6gF0we4ClglItVO31uAK0SkyHvBN3gvuZFhgjbBZTyOPNKN\n1fn5z+EPf/Bbm/CxaNEiZsyYQbdu3ejRo0fkqceAx0RkNfAtMAxARFoB01T1AlXdLSI/wfUWrAtM\n16geZIaRDWwusgDTowc88kjte5Hlas6qbdugfXs3Medxx2XqakZN2Fxk4SRMMRgzMAHlq69cq2Db\nNmjYsHaycvlDdOed8OGH8MQTMU8bGcQMTDgJk4GxucgCytKl0K1b7Y1LrhkzBl55Bdat81sTw0+C\nPs4k6PLCghmYgJJP8ZdIDj0U/vd/IaIDoWEYBYq5yALKgAFw5ZUwZEjtZeXalfLVVy4GM3eua4UZ\n2cFcZOHEXGRGVlHN3xYMuLE748fDHXf4rYlhGH5iBiaAbNgA9epBmzZ+a5I+110Hb7/tYklG4RH0\nGEfQ5YUFMzABpHqCS8njRvIBB8Ctt1orxjAKGYvBBJDRo+Hoo2Hs2MzI88tX/+230KEDPPUUnH56\npq5uVGMxmHBiMRgjq2Rpiv6c06CBa8HcdpuLKxmGUViYgQkY33wDa9dCz55+a5IZhg6FTz+FN9/0\nWxMjlwQ9xhF0eWHBDEzAWLYMOnWCAw/0W5PMUK+eGxNz++3WijGMQsNiMAHjl7+EjRszO+293776\nykro3t0tSnb++ZnSwvC7XI3sYDEYI2ssXhyO+EskdevCXXdZLMYwCg0zMAFC1RmYfB1gGQ+3+CK8\n+KK/ehi5IegxjqDLCwtmYAJEWZlzJ3kLCoYKEZg82fUqq6z0WxvDMHKBxWACxHPPwdNPw6xZmZUb\nFF+9Kpx2GtxwA1xxRaa0KVyCUq5GZrEYjJEVwhh/iUTErXg5cSLs3u23NoZhZBszMAEinye4TJaz\nz4bWrd3ofiO8BD3GEXR5YcEMTEDYuRNWrYKTTsrN9USkrYjME5E1IvJvEbnBOz5JRD4WkeXep39m\nr+tiMXfd5aaSMQwjvFgMJiCUlMCPfwzvvJN52bF8uiLSAmihqitEpDGwDBgIDAF2qOqDceTVumz7\n94eBA92sy0Z6WAwmnFgMxsg4uY6/qGq5qq7wtiuAd4HW3umsv9yTJ7t4zDffZPtKhmH4hRmYgODn\nBJci0g7oAZR4h0aLyEoRmS4iTbJxzZNPdu7AP/whG9INvwl6jCPo8sJCPb8VMByLF7t/9LnGc4/9\nBbhRVStE5BHgLu/0ZOBXwMjofJMmTdqzXVxcTHFxccrXvusuOPdcGDUKGjVKXfdCY/78+fZDZuQV\nFoMJAJ984ubq+uyz7CwyVpNPV0TqA38DXlHVh2Kcbwe8rKpdo45nrGwHD4a+fWHMmIyIKygsBhNO\nLAZjZBQ/VrAUEQGmA2sjjYuItIxINghYnU097rjDTYJpsRjDCB9mYAKAT/GXPsBVwFkRXZLPA+4T\nkVUishI4E7gpm0oUFbl4zKOPZvMqRq4Jeowj6PLCgsVgAkBJiVszJZeo6kJi/8F4JbeauFbMgAFw\n7bVwwAG5vrphGNnCYjA+8+230KyZW/XxkEOyc4188NVfeKFbK+bHP86o2FCTD+VqpI7FYIyMsWoV\nHHts9oxLvnDHHXDvvW5GA8MwwkFcAxNnOpFmIvKaiKwXkbnZGitRCIR9gstk6dULOneGxx/3W5Ng\nUlZWxllnnUXnzp3p0qULD3tLniY7tY+IlHqxteUi8q9s6xv0GEfQ5YWFRDGYXcBNkdOJiMhrwAjg\nNVW9X0TGAeO9j5EiJSVwzjl+axEM7rjDTeM/YgQ0aOC3NsGifv36TJkyhaKiIioqKujZs2f1KQUe\njDe1T0S6YlXdllVFDSOClGIwIjIL+I33OVNVN3tzWs1X1ROi0po/NwmOPRZmz4aOHbN3jXzy1ffr\nB0OGwDXXZEV8aBg4cCB//etfASYBFar6q3jpRWQDcJKqfh4njdXZAFCQMZiI6USWAM1VdbN3ajPQ\nPOOaFQCbN8P27dChg9+aBIeJE+Huu2HXLr81CS6lpaUsX7488lAyU/so8LqIvC0i12ZfS8NIspuy\n5x57HjedyA6JGBGoqioiMf/2ZGI6kTBTUgKnnAJ1MtzVIp+nFOnTB445BmbMcK4yY18qKiq49NJL\nmTp1KoMGDQJIamofoI+qbhKRI4DXRGSdqi6ITjR8+HDaeWt2N2nShKKioj31tvqdSmY/8v1LJ38h\nyaveLi0tJXSoatwPUB+YA4yJOLYON9U7QEtgXYx8asRn/HjVSZOyfx2vLBKWdbKfbJftP/6hetxx\nqrt2ZfUyece3336r/fr10ylTpqjq/uUKtANWa+LymwjcHON4xnSdN29exmQVmrxM11c/P4l6kcWc\nTgR4Cbja274ayPAq8oWB9SCLTd++0KYNPP2035oEB1Vl5MiRdOrUiTERE7clM7WPiDQSkYO97YOA\nfrHSZZJMeysKTV5YiBvkF5HTgX8Cq3A+XIAJwL+A54CjgFJgiKp+EZVX48kudHbvhqZNYeNG951N\n8inIX828efDDH8LatVDP5ptg4cKF9O3bl27dulHtol6xYgXAU0ARrn5uAH6orvNNK2Caql4gIscC\nL3ii6gF/UtV7oq9hdTYYhCnIbyP5fWL5crjySvcDmm3y0cCoupbMdde552TsT5DLdf78+Rn9V19I\n8sJkYGwkv0/4ucBYPiDiepRNngyVlX5rYxhGOlgLxieGDYMzznATPGabIP/TjYeq61V2ww1w+eVZ\nv1zeka/lasTHWjBGrbEWTGIiWzFVVX5rYxhGqpiB8YGtW90gy06d/NYk+PTrB40bw/PP+62JkQpB\nn+sr6PLCghkYH1iyxC2yVbeu35oEn+pWzF13WSvGMPINi8H4wO23u+/Jk3NzvXz31au62ZYnTIDB\ng3N22cCT7+VqxMZiMEatsAGWqSHiZlq2Voxh5BdmYHJMZSUsXWoGJlUuvNDN2fbyy35rYiRD0GMc\nQZcXFszA5Ji1a6F5czjsML81yS+qWzF33ulcZoZhBB+LweSYadNg4UJ44oncXTMsvvqqKujRA37x\nC9eiKXTCUq7GvlgMxkgbi7+kT5061ooxjHzCDEyOKSmB3r391iJ/GTQI/vtfePVVvzUx4hH0GEfQ\n5YUFMzA5ZPt2KCuDLl381UNE2orIPBFZIyL/FpEbvOPNROQ1EVkvInPjrI7oG3XquG7e1ooxjOBj\nMZgcMmcO3HMP5PrPTrRPV0Ra4BaMW+GtVroMGAiMALaq6v0iMg5oqqrjY8jztWwrK6FrV3joITfS\nv1CxGEw4sRiMkRaLFwfDPaaq5aq6wtuuAN4FWgMXA9XdD57AGZ3AUbeutWIMIx8wA5NDgjjBpYi0\nA3oAS4DmqrrZO7UZaO6TWgkZMgQ+/xzefNNvTYxYBD3GEXR5YcHWCswRVVVuDrJcdk9OhOceex64\nUVV3VK+UCG5RcBGpsX0wadKkPdvFxcU5XzK2bl247TbXijn7bDdOJp/473//i4jQsGHDpPPMnz/f\nfsiMvMJiMDni3Xfhggvgww9zf+1YPl0RqQ/8DXhFVR/yjq0DilW13FvrfZ6qnhBDXiDKdvdu6NjR\njS0K+pLoVVVVzJo1i5kzZ/LWW29RVVWFqlK3bl169+7NlVdeycCBA5EULKXFYMKJxWCMlAlK/AVA\n3K/YdGBttXHxeAm42tu+GpiVa91SoV4914q56y6/NUlMcXExy5YtY+zYsXz44Yds2rSJ8vJyPvzw\nQ8aOHcvSpUs588wz/VbTMDKKtWByxKhRrufT6NG5v3aMXmSnA/8EVgHVhTQB+BfwHHAUUAoMUdUv\nYsgLTNnu3g0dOsDjj7sVQoPKzp07E7rDkkkTSZBbMEFe8z7o8qwFY6RMkAZYqupCVa2jqkWq2sP7\nvKqq21T1HFVtr6r9YhmXoFGvHtx6a/BbMbEMR0VFBU899RQXXHBBjWkMI5+xFkwO+PJLaNUKtm2D\nBg1yf/0g/9PNBLt2Qfv28Kc/wWmn+a1NfHbu3Mns2bOZOXMmc+bMYfDgwVxyySVcdNFFKcsKe7kW\nKtaCMVJi6VI3SaMfxqUQqF8fbrkl2K2YOXPmMHz4cL7zne8wa9Yshg0bRrNmzXj88cfTMi6GkQ+Y\ngckBNsFl9rn6atdTb8kSvzWJzXnnnce2bdsoKSnhySef5KKLLkqpx1i+EfRxJkGXFxbMwOSAIMVf\nwkqDBm5J5aC2Yt555x06duzImWeeSf/+/Zk+fTqVlZV+q2UYWcViMFlGFY44AlatcnEYPygUX/3O\nnXD88fDCC3DyyX5rExtV5a233mLmzJk8//zzdO/encGDBzNq1KiUZRVKuRYaYYrBmIHJMu+9B+ec\nAx995J8OhfRD9NvfuklFX3rJb00SU1lZyRtvvMEzzzzDY489lnL+QirXQiJMBsZcZFnG4i+5ZeRI\neOcd9wkqK1eu5KWXXuKvf/0rO3bs2NNNOUwEPcYRdHlhIeFcZCLyGHABsEVVu3rHJgHXAJ95ySao\nqi0BFYMgTnAZZg44AH72M5g8GV580W9t9mfEiBGsXr2azp07U6fO3v93l1xySdx8ZWVlDBs2jC1b\ntiAie1xqydZFEekPPATUBR5V1fsycT+GEY+ELjIROQOoAJ6MMDATgR2q+mCcfNbcxnVPfuQRf41M\noblSvvkGjjsOXnkFunf3W5t96dSpE2vWrEm5B1l5eTnl5eUUFRVRUVFBz549Wb9+PcAkEtfFusD/\nAecAnwBLgStU9d2odIEu10KhoFxkqroA2B7jVCgeQDb56itYv94ZGSN3HHggjB3rWjFB4+STT2bt\n2rUp52vRogVFRUUANG7cmI4dO0aeTlQXewHvq2qpqu4CngEGpKyEYaRIbWIwo0VkpYhMD+LSukFg\n6VLo1g1sBpDcc911sHAhrF7ttyb7MmLECHr37k379u3p2rUrXbt2pVu3binJKC0tZfny5ZGHEtXF\n1kBZxP7H3rGsEfQYR9DlhYV014N5BKgecTAZ+BUwMjqR32uG+I1f8RdbNwQaNYKbb4af/xyefdZv\nbfYycuRIZsyYQZcuXfaJwSRLRUUFl156KVOnTmXQoEGQXF1M2u8lMhxo5+01AYqAYm9/vvdt+5nd\nr94uJWwk1U3ZW/Xw5eoYTDLnzJ8LAwbAlVe61Rf9pNBiMNVUVLhYzLx50KmT39o4evfuzeLFi9PK\nu2vXLi688ELOO+88xowZE2uW7HbErounApNUtb+3PwGoig7050u5hp0wxWDSasGISEtV3eTtDgIC\n5ojwH1WmokgEAAAdWklEQVTXgvn1r/3WpHBp3Bhuusm1Yp5+2m9tHD169OD73/8+F110EQ28yelE\nhMGDB8fNp6qMHDmSTp06MWbMmD3Hk6yLbwPf8QzQp8BlwBW1vRfDSEQy3ZRnAmcCh4tIGTARKBaR\nIlzTewPww6xqmYds2OCmkm/b1m9NCpvrr3etmHXr4IT91ubMPV9//TUNGzZk7ty5+xxPZGAWLVrE\njBkz6NatGz327TVyX6y6KCKtgGmqeoGq7haRnwBzcN2Up0f3IMs0QV5vJR/khYWEBkZVY/3TSX3Y\ncYFRHX8J8XyGecHBB8ONN8IvfgFPPeW3NvD444+nle/000+nqqpqn2OeK2VYrPSq+ilu/Fr1/ivA\nK2ld3DDSxEbyZwmb4DI4jB4Nr77quoz7xaRJk9i8eXON5zdt2sTEiRNzqFF2yfS/+UKTFxbS7UVm\nJGDxYv+D+4bjkEOckbn7bre0sh+cdNJJXH755Xz77beceOKJtGzZElWlvLycd955h4YNGzJ27Fh/\nlDOMLGGTXWaBb76Bww+HrVvdoD+/KdReZJF88YWbaXnJEheT8YuysjIWLVrExo0bATj66KPp06cP\nbdq0SVlWkMs16DGOIMsr+F5kRnyWLXPdYoNgXAxHkyYu4H/33TB9un96tG3blssvv9w/BQwjh1gL\nJgv88pewcSM8/LDfmjiC/E83l2zf7loxb78Nxxzjtza1x8o1nISpBWNB/ixgU/QHk6ZN4Uc/gnvu\n8VsTwygMzMBkGFUzMEHmppvg+edzvwDcuHHjAHjuuedye2GfCPpcX0GXFxbMwGSYsjKorAy+C0ZE\nHhORzSKyOuLYJBH5WESWe5/+fuqYDQ47DEaNgnvvze11Z8+ejapyjzWfjALCYjAZ5rnn4E9/gr/+\n1W9N9hLLp5vuOj9eurwu261boX17WLkydzMt/PSnP2XatGlUVFRwYFTvDxHhyy+/TFmmxWDCicVg\njBpZvDg/BlgW8jo/hx8O11wD9+VwTccHHniAL774gvPPP58dO3bs80nHuBhGPmAGJsOEYInkgljn\nZ+xYNwHmJ5/k9rovvfRSbi/oE0GPcQRdXliwcTAZZOdOWLUKTj7Zb03SJql1fiD/1/o58kgYMQLu\nvx+mTs3+9Ro3blzjMsnJushsnR8j37AYTAYpKXHdYPddbNB/avLpprPOj3cuFGVbXu4GxK5ZAy1b\n+q1N6lgMJpxYDMaISb7EX2pCRCJ/ZkO/zk+LFjBsGDzwgN+aGEY4MQOTQfIp/uKt8/MW0EFEykTk\nB7i1RVaJyErcGkA3+apkDvjZz9wEmHEmOjbSIOgxjqDLCwsWg8kgixe71RPzAVvnx9GqlVvW+pe/\ntJaMYWQai8FkiE8+ge7d4bPPgrfImPnq4/Pxx9Ctm1v18sgj/dYmeaxcw4nFYIz9WLLEVrDMV9q0\ngcsvhwfjDi81DCNVzMBkCJt/LL8ZPx6mTXOj/I3aE/QYR9DlhQUzMBnClkjOb446Ci69FKZM8VsT\nwwgPFoPJAN9+C82awaefuuV5g4b56pOjtBR69oT33nPlGXSsXMOJxWCMfVi1ys2eHETjYiRPu3Yw\naBA89JDfmhhGODADkwHyfYClsZdbboHf/c6tfmmkT9BjHEGXFxbMwGSAfBpgacTn2GPhoouCs9y1\nYeQzFoPJAMceC7NnQ8eOfmsSG/PVp8b777s/DB98AIce6rc2NWPlGk4sBmPsYfNm507p0MFvTYxM\ncfzxcP758Otf+62JYeQ3ZmBqSUkJnHIK1LEnGSpuvdVN429rgaVH0GMcQZcXFuxnsZZY/CWcdOgA\n/frBb3/rtyaGkb8kjMGIyGPABcCWiLXbmwHPAkcDpcAQVf0iKl9B+HOLi2HCBDj3XL81qRnz1afH\nu+/CmWfChx9C48b+6lJWVsawYcPYsmULIsKoUaO48cYb95SriNwMPAAcrqrbovOLSCnwJVAJ7FLV\nXjHSFES5Bp0wxWCSMTBnABXAkxEG5n5gq6reLyLjgKaqOj4qX+hf1t27oWlT2LjRfQcVMzDpc/nl\ncOKJblp/PykvL6e8vJyioiIqKiro2bMn69evR1VFRNoC04AOQM8aDMyGms5FpCmYcg0yYTIwCV1k\nqroAiB4VcDHwhLf9BDAww3rlBatXQ9u2wTYuRu24/XY3CeZXX/mrR4sWLSgqKgLc8ssd9+2y+CCQ\njAnM2Y9W0GMcQZcXFtKNwTRX1eolmjYDzTOkT15h8Zfw07kznHEG/P73fmuyl9LSUpZ763KLyADg\nY1VdlSCbAq+LyNsicm22dTQMyMCCY+ra6DHb1ZMmTdqzXVxcTHFxcW0vFyhKSuD00/3WYn/mz59v\n/6gyyO23uxjbj34EjRr5q0tFRQWXXnopU6dOZdCgQQC3AN+LSFJTK6WPqm4SkSOA10Rkneed2Ifh\nw4fTrl07AJo0aUJRUdGeelv9TiWzX1xcnFL6QpZXvV1aWkrYSGqgpYi0A16OiMGsA4pVtdxbx32e\nqp4QlSf0/tz27eH556FrV781iY/FYGrP4MHQty+MGeOfDrt27eLCCy/kvPPOY8yYMYhbfGgL8LWX\npA3wCdBLVbfUJEdEJgIVqvqrqOMFV65BpKBiMDXwEnC1t301MCsz6uQPn3/uBll26uS3JkYuuOMO\nuP9++OYbf66vqowcOZJOnToxJsLKqWpzVT1GVY8BPgZOjDYuItJIRA72tg8C+gGrs6lv0GMcQZcX\nFhIaGBGZCbwFdBCRMhEZAdwLfE9E1gNne/sFRUkJnHwy1K3rtyZGLigqcuX96KP+XH/RokXMmDGD\nefPm0aNHD3r06BEr2Z7mh4i0EpHZ3m4LYIGIrACWAH9T1bnZ19oodGwusjS5/Xb3PXmyv3okg7nI\nMsOyZTBggJur7IAD/NbGyjWsmIvMsCWSC5CePV1L5rHH/NbEMPIDMzBpUFkJS5e6OciMwuKOO+De\ne2HnTr81CTZBj3EEXV5YMAOTBmvXQvPmcPjhfmuSPiLymIhsFpHVEceaichrIrJeROaKSBM/dQwi\nvXq5sTGPP+63JoYRfCwGkwbTpsGCBfDkk35rkhyxfLrpTgHkpQtt2SbD4sVwxRWwfj00aOCfHhaD\nCScWgylwwrBEsk0BlD69e7sxUPnyB8Mw/MIMTBqEeIoYmwIoSSZOhLvvhl27/NYkmAQ9xhF0eWGh\n1lPFFBrbt0NZWfBH79eWeFMAQfinAUpEnz5wzDEwYwaMGJGba9oUQEa+YTGYFJkzB+65B/Kpntfk\n001nCiAvXSjLNlX++U/4wQ9g3Tqo58NfNYvBhBOLwRQwYYi/xKHgpwBKhb59oU0bePppvzUxjGBi\nBiZFwhJ/sSmAMsPEifDzn7vF54y9BD3GEXR5YcFiMClQVQVLlsATTyROG3RU9YoaTp2TU0XynOJi\nNybq2Wfhyiv91sYwgoXFYFLg3XfhggvcGu35hPnqs8vrr8NPfgJr1uR28lMr13BiMZgCpaQk1PEX\nI02++11o1gz+/Ge/NTGMYGEGJgVsgksjFiJujrLJk50b1Qh+jCPo8sKCGZgUsBaMURPnnguNG7sV\nTg3DcFgMJkm+/BJatYJt2/ydfyodzFefG2bPhvHjYeVKqJODv25WruHEYjAFyNKlbi2QfDMuRu44\n/3xo2BBm2eghwwDMwCRNyAdYGhmgOhZz110Wiwl6jCPo8sKCGZgkCcsASyO7XHSRMzQvv+y3Jobh\nPxaDSQJVOOIIWLXKxWHyDfPV55YXX3Q9ypYtc8YmW1i5hhOLwRQY778PjRrlp3Excs+AAW5Z7dmz\n/dbEMPzFDEwSWPzFSIU6deD22+HOO13rtxAJeowj6PLCghmYJLD4i5EqgwfDN9/Aq6/6rYlh+IfF\nYJKgRw945JH8NTLmq/eHZ5+FKVNcCzgbsRgr13BiMZgC4quvYP16Z2QMIxUuvdQN0H3tNb81MQx/\nMAOTgKVLoVs3N4DOMFKhbl247bbCjMUEPcYRdHlhwQxMAiz+YtSGyy6DrVvhzTf91sQwco/FYBIw\ncCB8//swZIjfmqSP+er95amn4NFH4R//yKxcK9dwYjEYDxEpFZFVIrJcRP6VKaWCgqpN0W/Uniuu\ngE8/hdp4UcrKyjjrrLPo3LkzXbp04eGHH97nvIjcLCJVItIsVn4R6S8i60TkPREZl74mhpE8tXWR\nKVCsqj1UtVcmFAoSpaVQrx60beu3JkY+U68e3Hqrm6MsXerXr8+UKVNYs2YNJSUl/Pa3v91zTkTa\nAt8DPoqVV0TqAr8B+gOdgCtEpGP62iQm6DGOoMsLC5mIwYSiKReL6tZLNqf7MAqDK6+Ejz6CBQvS\ny9+iRQuKiooAaNy4MR077mMfHgR+Fid7L+B9VS1V1V3AM8CA9DQxjOTJRAvmdRF5W0SuzYRCQcIC\n/EamqF8fbrmldq2YakpLS1m+fDkAIjIA+FhVV8XJ0hooi9j/2DuWNYqLi02eUWsD00dVewDnAdeL\nyBkZ0CkwLFpkU8QYmWPYMDev3VtvpS+joqKCSy+9lKlTp1YfugWYGJEkVnvbIveGL9SrTWZV3eR9\nfyYiL+Ka4nucAJMmTdqTtri4OK+s/Nat7segVx5GlubPn28+4QBSvz5MmOBaMelMIbNr1y4uueQS\nrrrqKgYOHFh9uB2wUpwftw2wTER6qeqWiKyfAJGRxLa4Vsx+DB8+nHbt2gHQpEkTioqK9tTb6ncq\nmf3I9y+d/IUkr3q7tLSU0KGqaX2ARsDB3vZBwCKgX8R5zWdmzlS96CK/tcgMXlmkUralwCpgOfCv\nGOdzfxMhYedO1aOOUi0pSS1fVVWVDh06VMeMGbPnWHS5AhuAZrp/edUDPsAZowbACqBjjHQZuEPH\nvHnzMiar0OSlWl+D/El7HIyIHAO86O3WA/6kqvdEnNd0ZQeBESPgpJPg+uv91qT2pNqvXkQ2AD1V\ndVsN5/O6bP3mkUfgb39LbTr/hQsX0rdvX7p164bXWmHFihX7lKuIfAicpKrbRKQVME1VL/DOnQc8\nBNQFpkfW1Yj8Vq4BIEzjYGygZQxUoU0bN27hO9/xW5vak6aBOUlVP6/hfN6WbRDYuROOPx5eeAFO\nPjl9OTbQMpyEycDYVDExWLPGzT12/PF+a+Iboe4d6DcNG8K4cW7Vy7AS9HEmQZcXFmoV5A8rc+ZA\nv34FPf6lj6puEpEjgNdEZJ2q7jOCI587cASBa66Be+6Bd96BE09MLo913jDyDXORxeDcc+G662DQ\nIL81yQy1aXKLyESgQlV/FXEsb8s2SEyd6tywL76YMGlMzEUWTsxFFmK++caNUzj7bL818QcRaSQi\nB3vbBwH9gNX+ahVORo2CJUtg5Uq/NTGM7GAGJooFC6B7dzj0UL818Y3mwAIRWQEsAf6mqnN91imU\nHHggjB0bzlhM0GMcQZcXFiwGE8WcOc5FVqio6gagyG89CoXrroP774fVq6FrV7+1MYzMYjGYKLp2\ndWt3nHKK35pkDvPVB5sHHoC334Znn00tn5VrOAlTDMYMTASffOKWR96yxS13GxbshyjYVFTAccfB\nvHnQqVPy+axcw0mYDIzFYCKYOxfOOSdcxsUIPo0bw003wc9/7rcmmSPoMY6gywsLZmAimDvXjX8x\njFxz/fXw+uuwbp3fmhhG5jAXmUdlJTRvDsuXh28FS3Ol5Ae/+IUzME89lVx6K9dwYi6yELJ8ORx5\nZPiMi5E/jB7tpvFfv95vTQwjM5iB8Sj07smG/xxyiDMyd9/ttya1J+gxjqDLCwtmYDzmzjUDY/jP\nDTe4qfw/+MBvTQyj9lgMBvjyS2jdGjZvhkaN/NYm85ivPr+YOBE+/himT4+fzso1nFgMJmTMmwen\nnhpO42LkH2PGwKxZsGGD35oYRu0wA4N1TzaCRdOm8KMfuen885WgxziCLi8smIHBAvxG8LjpJnj+\nefjoI781MYz0KfgYzAcfwOmnw6efhneBMfPV5ycTJsAXX8Ajj8Q+b+UaTiwGEyKq3WNhNS5G/nLz\nzW4CzLIyvzUxjPQwA2Pdk42Acvjhbmnl++7zW5PUCXqMI+jywkJBG5hdu1wPsnPO8VsTw4jN2LHw\n9NNupm/DyDcKOgazYIHrErpsmd+aZBfz1ec3N98Mu3fD1Kn7HrdyDScWgwkJ5h4z8oGf/tRNgLlp\nk9+aGEZqFKyBqax0Ewva+Bcj6LRoAcOGuZUv84WgxziCLi8s1PNbgVywfbtb83zlSli1yn2vWQMd\nOsBpp/mtnWEk5mc/gy5dYNw4t6yEYeQDoYrBVFbCe+/tNSLV39u3Q9eu0L27WxK5e3dXWQ85JKfq\n+Yb56sPB6NFwwAF7WzJWruEkTDGYvDUw27Y5AxJpTNauhZYt9xqRbt3c55hjoE7BOgPthygsfPyx\ne5/XrXNrF1m5hpMwGZi0XWQi0h94CKgLPKqqWemtv3u3W4Ap2pj85z97DcjJJ7vxAl26wMEHZ0OL\nwiJXZWskT1lZGcOGDQO20LmzcPvtowAQkcnAxYACnwPDVXW/oZkiUgp8CVQCu1S1Vzb1nT9/PsXF\nxSavwEnrf72I1AV+A/QHOgFXiEjH2irz+efw5pvw0EPwgx9A+/bzOeQQGDAA/vIX5x649lr45z/d\nFBoLF8LvfgfXXQe9e+9vXDIReKutjCDokArZKtuaCHqwNZPyaiOrfv36TJkyhRUr1lBZWcLDD/+2\n+tT9qtpdVYuAWcDEGkQoUKyqPbJtXABWrFhh8oy0e5H1At5X1VJV3QU8AwxINvOuXS7I/vTTMH48\nnH++W4/l2GPdWhjvveemz+/bdz5btrj9v/wF7rgDBg5M3uUVhB/3IOiQIrUq21QJskHItLzayGrR\nogVFRUUcdRT8z/80pm5dZ/NVdUdEssbA1jhicuZ2+eKLL0yekbaLrDUQ2Qz/GDglVsLPPtvXtbVq\nlfMht22718V13XXu++ij950T7NNPoXHjNDU00iXpsjX8YejQUh59dPmefRH5BTAU+Bo4tYZsCrwu\nIpXAH1R1WtYVNQqedA1MUpHAVq3g66/3Bt379IEf/xg6d4aDDkrzyka2sShvgKmoqGDMmEs566yp\nvPHGIABU9VbgVhEZD0wBRsTI2kdVN4nIEcBrIrJOVRdkS8/S0lKTZ6TXi0xETgUmqWp/b38CUBUZ\nDBYR+6EKEMn2SrGyzS8iy1VEjgL+rqpd4uURkYlAhar+Kuq4lWtAKPReZG8D3xGRdsCnwGXAFZEJ\nwvKAChAr2wAiIgI8AXyuqjdFHP+Oqr7n7Q4AlsfI2wioq6o7ROQgoB9wZ3Q6K1cj06RlYFR1t4j8\nBJiD68o6XVXfzahmhi9Y2QaWPsBVwCoRqTYitwAjRaQDrvvxB8CPAESkFTBNVS8AWgAvOBtFPeBP\nqjo3x/obBUjWBloahmEYhU2tx7eLSH8RWSci74nIuBrSPOydXykiPVKVISJXenlXicgiEemWqg5e\nupNFZLeIDE7jHopFZLmI/FtE5qdxD4eLyKsissKTMTzi3GMisllEVsfRPdEzjCsj0TNM436KReQ/\n3jNZLiK3xZFV6/tL8V5T0a2tiMwTkTVeudxQG/2SkZeifgeIyBLvvVkrIvfUUr9a19dU5GX6vYtI\nF7MupyMvUd1OVla8Oh4jbUbrRGBR1bQ/OBfK+0A7oD6wAugYleZ8XOARXHfXkjRk9AYO9bb7R8pI\nJn9EujeBvwGXpHj9JsAaoI23f3ga9zAJuKc6P27UdT1v/wygB7C6hucc9xkmKaPGZ5hmuRYDLyX5\nntT6/lKUl4puLYAib7sx8H+pvsNpyEtaPy99I++7HlACnJ6OfkmWayr3Wqu6m468iHT71eU09Ytb\nt1OUNYka6ni260RQP7VtwSQzKO9iXHASVV0CNBGR5qnIUNXFqvofb3cJ0CZFHQBGA38BPkvjHr4P\nPK+qH3v6RA9mS0bGJqB6es1DcMHa3Z68BcD2GDpXk+gZJpSR4BlGk+wzTSoonIn7S1FeKrqVq+oK\nb7sCeBdola5+ScpLWj9PztfeZgPcD922NPXLRH1NSV6W3rua6nI68hLV7VRk1VjHo8l0nQgqtTUw\nsQbltU4iTZsE56NlRDIS+Hsq+UWkNe5leMQ7FBl4Sub63wGaea6Pt0VkaNT5ZGRMAzqLyKfASuDG\n/W+tRhI9w1SJfobJXC/6fhQ4zWu+/11EOtVCn0zfX1q6ies51wP3Q1hr/eLIS0k/EakjIiuAzcA8\nVV2bpn6ZqK+pyouk1u9dgrqcjn6J6nYqsmpTx5O5Xm3qhC/Udj2YZHsIRP9b0xq24wsROQv4Aa5H\nTSr5HwLGq6qKiETpk0z++sCJwHeBRsBiESnRvd1Dk5FxC7BCVYtF5DjcYLfuuu9UH/GI9wyTpoZn\nGE0yst8B2qrq1yJyHm4erPbp6FStWho61ETKuolIY9y/4hu9lket9EsgLyX9VLUKKBKRQ4E5IlKs\nqvPT0C8T9TUdeZl87+LV5XTkJarbqciqbR2PJpN1whdq24L5BGgbsd8WZ2njpWnjHUtFBl5wcBpw\nsapGNi2Tyd8TeEZENgCXAL8TkYtTyF8GzFXVb1T1c+CfQPcUdTgN+DOAqn4AbAA6RN9nDSR6hkkR\n5xkmut5+96OqO6pdN6r6ClBfRJqlqlMN10vr/tLVTUTqA88DM1R1Vm31SyQv3WfnuZpmAyelqV8m\n6muq8jL63hG/LqcjL1HdTkVWbep4ouvVqk74Rm0COLgW0Ae4wFcDEgcNT2X/IH8yMo7CBdhOTUeH\nqPT/Dxic4vVPAF7H+b8bAauBTinKeBCY6G03x72czSLOtyO5gN9+zzBJGTU+wzTLtTl7u7n3AkoT\nyKz1/aUgL2ndcP8SnwSmxEmTtH5JyktFv8OBJt72gbgfwO+m+X7Uur6mIS+j711U+n3qcpr6xa3b\nKcqKW8ezXSeC+Km9ADgP11PmfWCCd+yHwA8j0vzGO78SODFVGcCjuB4Zy73Pv1LVId5LmeQ9jMX1\nNlkN3JDGPRwOvOw9g9XA9yPyzsSNmv8W94/qB2k8w7gyEj3DNO7neuDfXkV7izg/IJm4vxTvNRXd\nTgeqvLTVz+a8dPVLRl6K+nXFudRWAKuAn6ZTxzJZXzNZd9PRL15dTvN+49btTNTxbNeJoH5soKVh\nGIaRFQp4IWHDMAwjm5iBMQzDMLKCGRjDMAwjK5iBMQzDMLKCGRjDMAwjK5iBMQzDMLKCGRjDMHKO\niLwpIv2ijo0Rkd952w94U97fFyPvhSIyKc3rPi4il0Rc78AE6R8UkTPSuZZhBsYwDH+YCVwedewy\n4Glv+1qgq6rGWsPlZvZOdpkqyt45vW7Ejd6PxyPAT9O8VsFjBsYwDD94HrhAROrBnpmnW6nqQhF5\nCbeWzjsiMiQyk4i0BRqo6mYROVRESiPOHSQiG0WkrogUiUiJN2P1CyLSZF8xMhq3jMI8EXnDm7H6\ncRFZLW5xtDEA6ia9bBeV30gSMzCGYeQcVd0G/As35xa41syz3rmLgW9UtYeqPheVtQ9u6hzUTf65\nQkSKvXMXAq+qaiVuPrifqmp33LQtE/e9vP4aN1VLsap+F7esQitV7aqq3XDT0FSzHLdwmpEiZmAM\nw/CLSDfZZd5+Io7CLexVzbNeXjxZz3rLGhyqblEvcAt39U0g9wPgWG+Z4nOBLyPOfYqbmNJIETMw\nhmH4xUvAd7315hup6vIk80Wuk/Iy0F9EmuLWdXkzQfqYqOoXQDdgPnAdbpLOyPw2aWMamIExDMMX\n1C3ENg/njno6QfJqPgJaRMlYCjwMvKyO/wDbReR0L9lQnOGIZgfeEscichhQT1VfAG7HGatqWgKl\nSepnRFDbFS0NwzBqw0zgBWBI1PGaWgyLgBuijj0LPAcURxy7Gvi9iDTCub9GxJD1R+BVEfkEuAn4\nfyJS/ad7fES6HjGuaSSBTddvGEZeISJvAleq6qaEiWt/rfbAL72OB0aKmIvMMIx845e4OEkuuA64\nP0fXCh3WgjEMwzCygrVgDMMwjKxgBsYwDMPICmZgDMMwjKxgBsYwDMPICmZgDMMwjKxgBsYwDMPI\nCv8fFIeXAyYn0X4AAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x7f0ac7557350>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Q-point is denoted by the intersection of two lines as shown in the plot\n",
"Therefore load resistance is the reciprocal of the slope \n",
"\n",
" required load resistance is 90 ohm\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EX2_7 PG-2.29"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import exp\n",
"V=0.22 #forward bias voltage\n",
"T=25+273 #room temperature in degree kelvin\n",
"I0=2e-3 #reverse saturation current\n",
"n=1 #for germanium diode\n",
"k=8.62e-5#Boltzmann's constant\n",
"Vt=k*T \n",
"I=I0*(exp(V/(n*Vt))) # diode current\n",
"print \"therefore the P-N junction diode current is %f A\"%(I)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"therefore the P-N junction diode current is 10.483844 A\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|