1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
{
"metadata": {
"name": "",
"signature": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2 Casting Processes"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 2.1 on page no. 46"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from numpy import sqrt\n",
"# Given that\n",
"h=15 # Height of spur in cm\n",
"l= 50 # Length of cast in cm\n",
"w= 25 # weidth of cast in cm\n",
"h1= 15 # Height of cast in cm\n",
"g= 981 # Acceleration due to gravity in cm/sec**2\n",
"Ag= 5 # Cross sectional area of the grate in cm**2\n",
"v3= sqrt(2* g * h)\n",
"V = l*w*h1\n",
"tf1= V/(Ag*v3)\n",
"Am = l*w\n",
"tf2 = (Am/Ag)*(1/sqrt(2*g))*2*(sqrt(h) - sqrt(h-h1))\n",
"print \" Filling time for first design = %f sec, \\n Filling time for second design = %f sec\"% (tf1, tf2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Filling time for first design = 21.859294 sec, \n",
" Filling time for second design = 43.718589 sec\n"
]
}
],
"prompt_number": 34
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 2 on page no. 53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from numpy import pi, sqrt\n",
"# Given that\n",
"h=15 # Height of spur in cm\n",
"l= 50 # Length of cast in cm\n",
"w= 25 # weidth of cast in cm\n",
"h1= 15 # Height of cast in cm\n",
"g= 981 # Acceleration due to gravity in cm/sec**2\n",
"Ag= 5 # Cross sectional area of the grate in cm**2\n",
"Dm = 7800 # Density of molten Fe in Kg/m**3\n",
"Neta = 0.00496 # Kinetic viscosity in Kg/m-sec\n",
"theta = 90 # Angle in degree\n",
"Eq = 25 # (L/D) Equivalent \n",
"v3= sqrt(2* g * h)*(10**(-2))\n",
"d= sqrt((Ag*4)/(pi))*(10**(-2))\n",
"Re = Dm*v3*d/Neta\n",
"f = 0.0791*(Re)**(-1/4)\n",
"L=0.12 # in meter\n",
"Cd= (1+0.45+4*f*((L/d)+Eq))**(-1/2)\n",
"v3_ = Cd*v3\n",
"Re_ = (v3_/v3)*(Re)\n",
"f_ = 0.0791 *(Re_)**(-1/4)\n",
"Cd_ = (1+0.46+4*f_*(L/d + Eq))**(-1/2)\n",
"v3__ = Cd_*v3\n",
"V = l*w*h1\n",
"tf= (V/(Ag*v3__))*(10**-2)\n",
"print \" Filling time for first design = %f sec. \"% tf "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Filling time for first design = 31.918954 sec. \n"
]
}
],
"prompt_number": 35
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem on page no. 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given that\n",
"Hi=1.2 # Initial height in m\n",
"H= 0.05 # Height in m\n",
"g= 9.81 # Acceleration due to gravity in m/sec**2\n",
"Dm = 2700 # Density of molten metal in Kg/m**3\n",
"Neta = 0.00273 # Kinetic viscosity in Kg/m-sec \n",
"d= 0.075 # Diameter in m\n",
"D = 1 # Internal diameter of ladle in m\n",
"v3= sqrt(2* g * Hi)\n",
"Re = Dm*v3*d/Neta\n",
"ef=0.075\n",
"Cd= (1+ef)**(-1/2)\n",
"ef_=0.82\n",
"Re_ = (2+ef_)**(-1/2)\n",
"v3_ = sqrt(2*g*H)\n",
"Re_ = Dm*v3_*d/Neta\n",
"At = (pi/4)*D**2\n",
"An = (pi/4)*d**2\n",
"Cd= 0.96\n",
"tf= (sqrt(2/g))*(At/An)*(1/Cd)*sqrt(Hi)\n",
"m = Dm*An*Cd*sqrt(2*g*Hi)\n",
"m_ = Dm*An*Cd*sqrt(2*g*Hi*0.25)\n",
"print \"\"\"Time required to empty the ladle = %f sec,\n",
"Discharge rate are -\n",
"Initially = %f Kg/sec \n",
"When the ladle is 75 percent empty = %f Kg/sec. \"\"\"%(tf,m,m_)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Time required to empty the ladle = 91.596179 sec,\n",
"Discharge rate are -\n",
"Initially = 55.563236 Kg/sec \n",
"When the ladle is 75 percent empty = 27.781618 Kg/sec. \n"
]
}
],
"prompt_number": 36
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 5 on page no. 66"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sympy import symbols, solve\n",
"# Given that\n",
"thetaF= 1540 # Temperature of mould face in degree centigrade\n",
"Theta0 = 28 # Initial temperature of mould in Degree centigrade\n",
"L= 272e3 # Latent heat of liquid metal in J/Kg\n",
"Dm = 7850 # Density of liquid metal in Kg/m**3\n",
"c = 1.17e+3 #Specific heat of sand in J/Kg-K\n",
"k = 0.8655 # Conductivity of sand in W/m-K\n",
"D= 1600 # Density of sand in Kg/m**3\n",
"h = 0.1 # Height in m\n",
"b = 10 # Thickness of slab in cm\n",
"r =h/2# V/A in meter\n",
"lamda = (thetaF - Theta0)*(D*c)/(Dm*L)\n",
"Beta1 = 2*lamda/sqrt(pi)\n",
"Alpha = k /(D*c)\n",
"ts1 = r**2 /((Beta1**2)*Alpha)#In sec\n",
"ts1_=ts1/3600 # In hour\n",
"Beta= symbols('Beta') \n",
"p=Beta**2 - lamda*(2/sqrt(pi))*Beta -lamda/3\n",
"Beta2 = solve(p)[0]\n",
"print \"The value of Beta2 is %f \"%Beta2\n",
"print \"We only take the positive value of Beta2 ,\\nHence Beta2=1.75\" \n",
"r1 = r/3\n",
"ts2 = (r1**2)/((1.75**2)*Alpha) # in sec\n",
"ts2_=ts2/3600#in Hour\n",
"print \"Solidification time for slab-shaped casting = %f hr,\\nSolidification time for sphere = %f hr\"%(ts1_,ts2_)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of Beta2 is -0.252713 \n",
"We only take the positive value of Beta2 ,\n",
"Hence Beta2=1.75\n",
"Solidification time for slab-shaped casting = 0.671318 hr,\n",
"Solidification time for sphere = 0.054495 hr\n"
]
}
],
"prompt_number": 37
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 7 on page no. 75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given that\n",
"thetaF= 1540 # Temperature of mould face in degree centigrade\n",
"thetaO = 28 # Initial temperature of mould in Degree centigrade\n",
"L= 272e3 # Latent heat of iron in J/Kg\n",
"Dm = 7850 # Density of iron in Kg/m**3\n",
"Cs = 0.67e+3 #Specific heat of iron in J/Kg-K\n",
"C = 0.376e3 #Specific heat of copper in J/Kg-K\n",
"Ks = 83 # Conductivity of iron in W/m-K\n",
"K = 398 # Conductivity of copper in W/m-K\n",
"D= 8960 # Density of copper in Kg/m**3\n",
"h = .1 # Height in m\n",
"hF = 1420 # Total heat transfer coefficient across the casting-mould interface in W/m**2-\u00b0C\n",
"AlphaS = K /(D*C)\n",
"thetaS = 982 #In \u00b0C as in example 2.6\n",
"h1= (1+(sqrt((Ks*Dm*Cs)/(K*D*C))))*hF\n",
"a = 1/2 + (sqrt((1/4)+Cs*(thetaF-thetaS)/(3*L)))\n",
"delta=h/2\n",
"ts = (delta+((h1*delta**2)/(2*Ks)))/((h1*(thetaF-thetaS))/(Dm*L*a)) # in sec\n",
"ts_ = ts/3600 # in hours\n",
"h2= (1+(sqrt((K*D*C)/(Ks*Dm*Cs))))*hF\n",
"gama= ((h2**2)/(K**2))*AlphaS*ts\n",
"thetaS_ = thetaO + (thetaS-thetaO)*(1-((exp(gama))))\n",
"print \" Solidification time = %f hr,\\n The surface temperature of the mould = %f \u00b0 C\"%(ts_,thetaS_)\n",
"# The value of the surface temperature of the mould in the book is given as 658.1\u00b0 C, Which is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Solidification time = 0.026965 hr,\n",
" The surface temperature of the mould = -1901.439242 \u00b0 C\n"
]
}
],
"prompt_number": 38
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 8 on page no. 77"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Given that\n",
"A= 60*7.5 # Cross sectional area in cm**2\n",
"v=0.05 # Withdrawal rate in m/sec\n",
"t = 0.0125 # Thickness in m\n",
"thetaF= 1500 # Temperature of mould face in degree centigrate\n",
"thetaP = 1550 # \n",
"thetaO = 20 # Initial temperature of mould in Degree centigrate\n",
"L= 268e3 # Latent heat of molten metal in J/Kg\n",
"Dm = 7680 # Density of molten metal in Kg/m**3\n",
"Cs = 0.67e+3 #Specific heat of molten metal in J/Kg-K\n",
"Cm = 0.755e3 #Specific heat of mould in J/Kg-K\n",
"Ks = 76 # Conductivity of molten metal in W/m-K\n",
"hF = 1420 # Heat transfer coefficient at the casting-mould interface in W/m**2-\u00b0C\n",
"Dtheta = 10 # Maximum temperature of cooling water in \u00b0 C\n",
"L_ = L+Cm*(thetaP-thetaF)\n",
"x=L_ / (Cs*(thetaF-thetaO))\n",
"y= hF*t/Ks\n",
"print \"L_/(Cs(thetaF-thetaO)) = %f,\\nhF*t/Ks = %f\"%(x,y)\n",
"z=0.11 # Where z=hF**2 * lm / (v*Ks*Dm*Cs)\n",
"lm= (z*v*Ks*Dm*Cs)/(hF**2)\n",
"Z=0.28 # Where Z=Q/(lm*(thetaF-thetaO)*sqrt(lm*v*Dm*Cs*Ks))\n",
"Q = Z*lm*(thetaF-thetaO)*sqrt(lm*v*Dm*Cs*Ks)\n",
"m = Q / (4.2e3*Dtheta)\n",
"print \"The mould length = %f meter,\\nThe cooling water requirement = %f Kg/sec\"%(lm,m)\n",
"# Answer for The cooling water requirement in the book is given as 5.05 Kg/sec, Which is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"L_/(Cs(thetaF-thetaO)) = 0.308340,\n",
"hF*t/Ks = 0.233553\n",
"The mould length = 1.066684 meter,\n",
"The cooling water requirement = 48.065525 Kg/sec\n"
]
}
],
"prompt_number": 39
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 9 on page no. 81"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from numpy import floor\n",
"# Given that\n",
"a = 15 # Side of the aluminium cube in cm\n",
"Sh = 0.065 # Volume shrinkage of aluminium during solidification\n",
"Vc = a**3\n",
"Vr = 3*Sh*Vc\n",
"h = ((4*Vr)/pi)**(1/3)\n",
"Rr = 6.0/h # Where Rr= (A/V)r\n",
"Rc = 6.0/a # Where Rc = (A/V)c\n",
"print \"(A/V)r=%f, (A/V)c=%f\\n Hence Rr is greater than Rc\"%(Rr,Rc)\n",
"dmin = 6.0/Rc\n",
"Vr_ = (pi/4)*dmin**3\n",
"print \"\"\" With minimum value of d Vr=%d cm**3 .\n",
"This valume is much more than the minimum Vr necessary. \n",
"Let us now consider the top riser when the optimum cylindrical shape is obtained with h=d/2 \n",
"and again (A/V)r = 6/d. However, with a large top riser,\\n the cube loses its top surface for the purpose of heat dissipation.\"\"\"%Vr_\n",
"Rc_ = 5.0/a\n",
"dmin_=6.0/Rc_\n",
"print \" d should be greater than or equal to %d cm\"%dmin_\n",
"Vr__ = (pi/4)*dmin_**2 *floor(h)\n",
"print \" The riser volume with minimum diameter is %d cm**3\"%Vr__"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(A/V)r=6.000000, (A/V)c=0.400000\n",
" Hence Rr is greater than Rc\n",
" With minimum value of d Vr=2650 cm**3 .\n",
"This valume is much more than the minimum Vr necessary. \n",
"Let us now consider the top riser when the optimum cylindrical shape is obtained with h=d/2 \n",
"and again (A/V)r = 6/d. However, with a large top riser,\n",
" the cube loses its top surface for the purpose of heat dissipation.\n",
" d should be greater than or equal to 18 cm\n",
" The riser volume with minimum diameter is 254 cm**3\n"
]
}
],
"prompt_number": 40
}
],
"metadata": {}
}
]
}
|