1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
{
"metadata": {
"name": "",
"signature": "sha256:abf9f7aa50395283288e62f0f85bd91bae92b4155380f5c281c2602a3861ceb7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter - 5 Wave Motion and speed"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1, page : 115"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import pi\n",
"#frequency\n",
"r=3 #m\n",
"w=10 #s**-1\n",
"vs=r*w #m/s\n",
"A=6 #m\n",
"fd=5/pi #s**-1\n",
"vmax=A*2*pi*fd #m/s\n",
"v=330 #m/s\n",
"n=340 #Hz\n",
"nmax=((v+vmax)/(v-vs))*n #Hz\n",
"nmin=((v-vmax)/(v+vs))*n #Hz\n",
"print \"Maximum frequency is \",nmax,\" Hz\"\n",
"print \"Minimum frequency is \",nmin,\" Hz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum frequency is 442.0 Hz\n",
"Minimum frequency is 255.0 Hz\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2, page : 118"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"# frequency\n",
"#given data :\n",
"N=400 #hZ\n",
"V=340 #M/S\n",
"VS=60 #M/S\n",
"N2=((V/(V-VS))*N) #Hz\n",
"print \"Frequency when engine is approaching to the listner is \",round(N2,2),\" Hz\"\n",
"N3=((V/(V+VS))*N) #Hz\n",
"print \"Frequency when engine is moving away from the listner is \",round(N3,2),\" Hz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency when engine is approaching to the listner is 485.71 Hz\n",
"Frequency when engine is moving away from the listner is 340.0 Hz\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3, page : 120"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#frequency\n",
"v=1200 #km/h\n",
"w=40 #km/h\n",
"vs=40 #km/h\n",
"n=580 #Hz\n",
"nd=((v+vs)/((v+vs)-vs))*n #Hz\n",
"print \"Frequency of the whistle as heared by an observer on the hill is \",round(nd,2),\" Hz\"\n",
"x=29/30 #km\n",
"x*=1000 #m\n",
"print \"Distance is \",round(x,2),\" m\"\n",
"ndd=((v-w)+vs)/((v-w))*nd #Hz\n",
"print \"Frequency heared by driver is \",round(nd,2),\" Hz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Frequency of the whistle as heared by an observer on the hill is 599.33 Hz\n",
"Distance is 966.67 m\n",
"Frequency heared by driver is 599.33 Hz\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5, page :125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#frequency\n",
"v=340 #m/s\n",
"n=600 #Hz\n",
"vs=36 #km h**-1\n",
"vs1=vs*(1000/3600) #m/s\n",
"apf=((v)/(v-vs1))*n #Hz\n",
"vs2=54 #km h**-1\n",
"vs3=vs2*(1000/3600) #m/s\n",
"apf1=((v)/(v+vs3))*n #Hz\n",
"print \"Two apparent frequencies are \",round(apf,2),\" Hz and \",round(apf1,2),\" Hz\"\n",
"df=apf-apf1 #Hz\n",
"print \"Difference in frequencies is \",round(df,2),\" Hz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Two apparent frequencies are 618.18 Hz and 574.65 Hz\n",
"Difference in frequencies is 43.53 Hz\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9, page : 135"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import sqrt, pi\n",
"#foce constant,displacement , acceleration and energy\n",
"x1=.10 # in m\n",
"F1=4 # in N\n",
"K=F1/x1 \n",
"x2=0.12 # in m\n",
"print \"(a) The force constant, K = \",K,\" N/m \"\n",
"F=-K*x2 \n",
"print \"(b) The force, F = \",F, \" N\"\n",
"m=1.6 # in kg\n",
"T=2*pi*sqrt(m/K) \n",
"print \"(c) Period of pscillation, T = \",round(T,2), \" s\"\n",
"A=x2 \n",
"print \"(d) Amplitude of motion,A = \",A, \" m\"\n",
"alfa=A*K/m \n",
"print \"(e) Maximum acceleration,alfa = \",alfa,\" m/s**2\"\n",
"x=A/2 # in m\n",
"w=sqrt(K/m) \n",
"v=w*sqrt(A**2-x**2) \n",
"a=w**2*x # in m/s**2\n",
"KE=(1/2)*m*v**2 # in J\n",
"PE=(1/2)*K*x**2 # in J\n",
"TE=KE+PE \n",
"print \"\"\"(f) velocity is %0.2f m/s\n",
"acceleration %0.2f m/s**2\n",
"Kinetic energy is %0.2f J\n",
"Potential energy is %0.2f J\"\"\" %(v,a,KE,PE)\n",
"print \"(g) Total energy of the oscillating system %0.2f J\" %TE"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The force constant, K = 40.0 N/m \n",
"(b) The force, F = -4.8 N\n",
"(c) Period of pscillation, T = 1.26 s\n",
"(d) Amplitude of motion,A = 0.12 m\n",
"(e) Maximum acceleration,alfa = 3.0 m/s**2\n",
"(f) velocity is 0.52 m/s\n",
"acceleration 1.50 m/s**2\n",
"Kinetic energy is 0.22 J\n",
"Potential energy is 0.07 J\n",
"(g) Total energy of the oscillating system 0.29 J\n"
]
}
],
"prompt_number": 22
}
],
"metadata": {}
}
]
}
|