1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
{
"metadata": {
"name": "",
"signature": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter2 : Atomic model & bonding in solids"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-2.1, page no-28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#given\n",
"#atomic no. of gold\n",
"Z=79\n",
"#kinetic energy of alpha particle\n",
"E=7.68*1.6*(10)**(-13) #J because [1MeV=1.6*(10)**(-13)]\n",
"e=1.6*10**(-19) #C\n",
"E0=8.854*10**(-12) #F/m\n",
"#the distance of closest approach is given by:\n",
"d0=2*e*Z*e/(4*(math.pi)*E0*E) #m\n",
"print \"The closest approach of alpha particle is %.2ef m\" %d0"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The closest approach of alpha particle is 2.96e-14f m\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-2.2, page no-29"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import *\n",
"from numpy import *\n",
"#given\n",
"#IN THE RUTHERFORD SCATTERING EXPERIMENT\n",
"#the no of particles scattered at\n",
"theta1=(pi)/2 #radians\n",
"#is\n",
"N90=44 #per minute\n",
"#the number of particles scattered particales N is given by\n",
"#N=C*(1/(sin(theta/2))**4) where C is propotionality constant\n",
"#solving above equation for C\n",
"C=N90*(sin(theta1/2))**4 \n",
"# now to find the no of particles scatering at 75 and 135 degrees\n",
"theta2=75*(pi)/180 #radians\n",
"N75=C*(1/(sin(theta2/2))**4) #per minute\n",
"theta3=135*(pi)/180 #radians\n",
"N135=C*(1/(sin(theta3/2))**4) #per minute\n",
"print \"The no of particles scattered at 75 and 135 degrees are %d per minute and %d per minutes\" %(N75,N135)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The no of particles scattered at 75 and 135 degrees are 80 per minute and 15 per minutes\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-2.3, page no-32"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#mass of electron\n",
"m=9.11*10**(-31) #kg\n",
"#charge on an electron\n",
"e=1.6*10**(-19) #C\n",
"#plank's constant\n",
"h=6.62*10**(-34)\n",
"E0=8.85*10**(-12) \n",
"#NO OF ELECTRONS SHELLS IN HYDROZEN ATOm\n",
"n=1\n",
"#atomic number of hydrogen\n",
"Z=1\n",
"#radius of first orbit of hydrogen is given by\n",
"r1=n**2*E0*h**2/((pi)*m*Z*e**2) #m\n",
"print \"The radius of the first orbit of the electron in the hydrogen atom %.2e\"%(r1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The radius of the first orbit of the electron in the hydrogen atom 5.29e-11\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-2.4, page no-32"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#mass of electron\n",
"m=9.11*10**(-31) #kg\n",
"#charge on an electron\n",
"e=1.6*10**(-19) #C\n",
"#plank's constant\n",
"h=6.62*10**(-34)\n",
"E0=8.85*10**(-12) \n",
"#NO OF ELECTRONS SHELLS IN HYDROZEN ATOm\n",
"n=1\n",
"#atomic number of hydrogen\n",
"Z=1\n",
"#ionization potential energy of hydrogen atom is given by\n",
"E=m*Z**2*e**4/(8*(E0)**2*h**2*n**2) #J\n",
"#energy in eV\n",
"EV=E/e #eV\n",
"print \"The ionization potential for hydrogen atom is %0.2f V\" %(EV)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ionization potential for hydrogen atom is 13.59 V\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-2.5, page no-34"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-2.6, page no-36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#uncertainity in the momentum\n",
"deltap=10**-27 #kg ms**-1\n",
"#according to uncertainity principle\n",
"#deltap* deltax >=h/(2*(pi))\n",
"#we know that \n",
"h=6.626*10**-34 #Js\n",
"#here instead of inequality we are using only equality just for notation otherwise it is greater than equal to as mentioned above\n",
"#now deltax is given by\n",
"deltax=h/(2*(pi)*deltap) #m\n",
"print \"The minimum uncertainity is %.2e m\"%(deltax)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum uncertainity is 1.05e-07 m\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-2.10, page no- 57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#ionization potential of hydrogen\n",
"E1=13.6 #eV\n",
"#when \n",
"n=3\n",
"E3=-E1/n**2 #eV\n",
"#when \n",
"n=5\n",
"E5=-E1/n**2 #eV\n",
"print \"Energy of 3rd and 5th orbits are %0.2f eV and %0.2f eV\"%(E3,E5)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Energy of 3rd and 5th orbits are -1.51 eV and -0.54 eV\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-2.11, page no-59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#dipole moment og HF is\n",
"DM=6.375*10**(-30) #Cm\n",
"#intermolecular distance\n",
"r=0.9178*10**(-10) #m\n",
"#charge on an electron\n",
"e=1.67*10**(-19) #C\n",
"#since the HF posses ionic characters\n",
"#so\n",
"#Hf in fully ionic state has dipole moment as\n",
"DM2=r*e #Cm\n",
"#percentage ionic characters\n",
"percentage=DM/DM2*100 #%\n",
"print \"The percentage ionic character is %0.2f approx.\"%(percentage)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The percentage ionic character is 41.59 approx.\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"example-2.12, page no-60"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"#elctronegativity of In\n",
"EnIn=1.5\n",
"#elctronegativity of As\n",
"EnAs=2.2\n",
"#elctronegativity of Ga\n",
"EnGa=1.8\n",
"#for InAs\n",
"ionic_charater1=(1-exp((-0.25)*(EnAs-EnIn)**2))*100 #in %\n",
"#for GaAs\n",
"ionic_charater2=(1-exp((-0.25)*(EnAs-EnGa)**2))*100 # in %\n",
"print \"Ionic character in InAs and GaAs are %0.1f %% and %0.1f %%\"%(ionic_charater1,ionic_charater2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Ionic character in InAs and GaAs are 11.5 % and 3.9 %\n"
]
}
],
"prompt_number": 30
}
],
"metadata": {}
}
]
}
|