1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 3: Heating and Cooling of Electrical Machines"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1, Page number 37"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"d = 12.0 #Diameter of copper bar(mm)\n",
"t = 1.5 #Thickness of micanite tube(mm)\n",
"rho = 8.0 #Thermal resistivity(ohm-m)\n",
"theta_diff = 25.0 #Temperature difference(\u00b0C)\n",
"l = 0.2 #Length of bar(m)\n",
"\n",
"#Calculation\n",
"S = math.pi*(d+t)*10**-3*l #Area of insulation in the path of heat flow(m^2)\n",
"R_s = rho*t*10**-3/S #Thermal resistance in the micanite tube(ohm)\n",
"Q_con = theta_diff/R_s #Loss that will pass from copper bar to iron(W)\n",
"\n",
"#Result\n",
"print('Loss that will pass from copper bar to iron, Q_con = %.2f W' %Q_con)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Loss that will pass from copper bar to iron, Q_con = 17.67 W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2, Page number 37"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"ratio = 20.0 #Ratio of resistivity across lamination to along lamination\n",
"t = 40.0 #Thickness of lamination stack(mm)\n",
"S = 6000.0 #Cross-section of lamination(mm^2)\n",
"theta = 20.0 #Temperature difference across laminations(\u00b0C)\n",
"theta_1 = 5.0 #Temperature difference among laminations(\u00b0C)\n",
"Q_con_1 = 25.0 #Heat conducted along laminations(W)\n",
"S_1 = 2500.0 #Cross-section of lamination(mm^2)\n",
"t_1 = 20.0 #Thickness of lamination stack(mm)\n",
"\n",
"#Calculation\n",
"rho_1 = S_1*theta_1*10**-6/(Q_con_1*t_1*10**-3) #Thermal resistivity along direction of lamination(ohm-m)\n",
"rho = ratio*rho_1 #Thermal resistivity across laminations(ohm-m)\n",
"Q_con = S*10**-6*theta/(rho*t*10**-3) #Heat conducted across laminations(W)\n",
"\n",
"#Result\n",
"print('Loss that will be conducted across laminations, Q_con = %.f W' %Q_con)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Loss that will be conducted across laminations, Q_con = 6 W\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3, Page number 39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"e = 0.8 #Co-efficient of emissivity\n",
"temp_body = 60.0 #Temperature of body(\u00b0C)\n",
"temp_walls = 20.0 #Temperature of walls of room(\u00b0C)\n",
"\n",
"#Calculation\n",
"T_1 = 273+temp_body #Temperature of body(K)\n",
"T_0 = 273+temp_walls #Temperature of walls of room(K)\n",
"q_rad = 5.7*10**-8*e*(T_1**4-T_0**4) #Heat radiated from body(W/m^2)\n",
"\n",
"#Result\n",
"print('Heat radiated from body, q_rad = %.1f W/m^2' %q_rad)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat radiated from body, q_rad = 224.6 W/m^2\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|