1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
|
{
"metadata": {
"name": "",
"signature": "sha256:7afbb46d48c2bdf700c3dc220becf18da8796860629c8c3b8505b530a4a07b18"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter10:Rotational Mechanics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 25"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 10.1\n",
"#calculation of the number of revolutions made\n",
"#given data\n",
"import math \n",
"wzero=100.*2.*math.pi/60.#initial angular velocity(in rad/s) of the motor\n",
"w=0#final angular velocity(in rad/s) of the motor\n",
"t=15.#time interval(in s)\n",
"\n",
"#calculation\n",
"alpha=(w-wzero)/t#equation of angular motion\n",
"theta=(wzero*t)+(alpha*t*t/2.)#equation of angular motion\n",
"\n",
"print '%s %.2f' %(\"the number of revolutions the motor makes before coming to rest is\",theta/(2*math.pi))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the number of revolutions the motor makes before coming to rest is 12.50\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1w - Pg 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#example 10.1w\n",
"#calculation of the number of revolutions made by the wheel \n",
"\n",
"#given data\n",
"wzero=0#initial angular velocity(in rad/s) of the wheel \n",
"alpha=2.#angular acceleration(in rad/s**2)\n",
"t=10#time(in s) interval\n",
"\n",
"#calculation\n",
"theta=(wzero*t)+(alpha*t*t/2.)#equation of angular motion\n",
"n=round(theta/(2.*math.pi))#number of revolutions\n",
"\n",
"print '%s %.2f' %(\"the number of revolutions made by the wheel is\",n)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the number of revolutions made by the wheel is 16.00\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - Pg 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#example 10.2\n",
"#calculation of the time taken by the fan to attain half of the maximum speed\n",
"\n",
"#given data\n",
"wzero=0#initial angular velocity(in rad/s) of the fan\n",
"w=400.*(2.*math.pi/60.)#final angular velocity(in rad/s) of the fan\n",
"t=5#tiem(in s) taken\n",
"\n",
"#calculation\n",
"alpha=(w-wzero)/t#equation of angular motion\n",
"wdash=w/2.#half of maximum speed\n",
"t1=(wdash-wzero)/alpha#equation of angular motion\n",
"\n",
"print '%s %.2f %s' %(\"the time taken by the fan to attain half of the maximum speed is\",t1,\"s\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the time taken by the fan to attain half of the maximum speed is 2.50 s\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2w - Pg 27"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#example 10.2w\n",
"#calculation of the angle rotated during the next second\n",
"\n",
"#given data\n",
"theta=2.5#angular displacement(in rad) of the wheel\n",
"t=1.#time(in s) required\n",
"\n",
"#calculation\n",
"alpha=(theta*2.)/(t*t)#equation of angular motion\n",
"theta1=(alpha*(t+1.)*(t+1.)/2.)#angle rotated during first two seconds\n",
"thetar=theta1-theta#angle rotated during next second\n",
"\n",
"print '%s %.2f %s' %(\"the angle rotated during the next second is\",thetar,\"rad\\n\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the angle rotated during the next second is 7.50 rad\n",
"\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E3 - Pg 28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#example 10.3\n",
"#calculation of the angular velocity and angular acceleration of the pulley \n",
"\n",
"#given data\n",
"v=20.#linear speed(in cm/s) of the bucket\n",
"r=10.#radius(in cm) of the pulley\n",
"a=4.*10.**2.#linear acceleration(in cm/s**2) of the pulley\n",
"\n",
"#calculation\n",
"w=v/r#formula of angular velocity\n",
"alpha=a/r#formula of angular acceleration\n",
"\n",
"print '%s %.2f %s %s %.2f %s' %(\"the angular velocity of the pulley is\",w,\"rad/s\",\"and angular acceleration of the pulley is\",alpha,\"rad/s**2\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the angular velocity of the pulley is 2.00 rad/s and angular acceleration of the pulley is 40.00 rad/s**2\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E3w - Pg 28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#example 10.3w\n",
"#calculation of the torque required to stop the wheel in one minute\n",
"\n",
"#given data\n",
"wzero=50.*(2.*math.pi/60.)#initial angular velocity(in rad/s) of the wheel\n",
"w=0#final angular velocity(in rad/s) of the wheel\n",
"t=60.#time(in s) taken to stop the wheel\n",
"I=2.#moment of inertia(in kg-m**2) of the wheel\n",
"\n",
"#calculation\n",
"alpha=(w-wzero)/t#equation of angular motion\n",
"tau=I*abs(alpha)#torque\n",
"\n",
"print '%s %.2f %s' %(\"the torque required to stop the wheel in one minute is\",tau,\"N-m\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the torque required to stop the wheel in one minute is 0.17 N-m\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E4w - Pg 30"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#example 10.4w\n",
"#calculation of the angular velocity of the wheel\n",
"\n",
"#given data\n",
"F=20.#force(in N) of pull applied\n",
"I=.2#moment of inertia(in kg-m**2)\n",
"r=20.*10.**-2.#radius(in m) of the wheel\n",
"t=5.#time(in s) interval\n",
"wzero=0#initial angular velocity(in rad/s) of the wheel \n",
"\n",
"#calculation\n",
"tau=F*r#torque applied to the wheel\n",
"alpha=tau/I#angular acceleration\n",
"w=wzero+(alpha*t)#equation of angular motion\n",
"\n",
"print '%s %.2f %s' %(\"the angular velocity of the wheel after 5 s is\",w,\"rad/s\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the angular velocity of the wheel after 5 s is 100.00 rad/s\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E5 - Pg 30"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#example 10.5\n",
"#calculation of the moment of inertia of the wheel\n",
"\n",
"#given data\n",
"r=10.*10.**-2.#radius(in m) of the wheel\n",
"F=5.#force(in N) of pulling\n",
"aplha=2.#angular acceleration(in rad/s**2) of the wheel\n",
"\n",
"#calculation\n",
"tau=F*r#net torque\n",
"I=tau/aplha#moment of inertia\n",
"\n",
"print '%s %.2f %s' %(\"the moment of inertia of the wheel is\",I,\"kg-m**2\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the moment of inertia of the wheel is 0.25 kg-m**2\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E7w - Pg 31"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#example 10.7w\n",
"#calculation of the position of second kid on a balanced seesaw\n",
"\n",
"#given data\n",
"ma=10.#mass(in kg) of kid A\n",
"mb=15.#mass(in kg) of kid B\n",
"l=5.#length(in m) of the seesaw\n",
"la=(l/2.)#distance of A kid from fulcrum as he is sitting at an end\n",
"\n",
"#calculation\n",
"#taking torque about fulcrum...........(mb*g*x) = (ma*g*)\n",
"x=(ma*la)/mb\n",
"\n",
"print '%s %.2f %s' %(\"the second kid should sit at a distance of\",x,\"m from the centre\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the second kid should sit at a distance of 1.67 m from the centre\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E8w - Pg 31"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#example 10.8w\n",
"#calculation of the normal force and the frictional force that the floor exerts on the ladder\n",
"\n",
"#given data\n",
"m=10.#mass(in kg) of the ladder\n",
"theta=53.#angle(in degree) made by the ladder against the vertical wall\n",
"g=9.8#gravitational acceleration(in m/s**2) of the earth\n",
"\n",
"#calculation\n",
"#taking horizontal and vertical components\n",
"#N1 = f........................(1)\n",
"#N2 = W........................(2)\n",
"#taking torque about B\n",
"W=m*g\n",
"N2=W#from equation (2)\n",
"f=(W*math.sin(theta)*57.3/2.)/(math.cos(theta)*57.3)#from equation (1)\n",
"\n",
"print '%s %.2f %s' %(\"the normal force that the floor exerts on the ladder is\",N2,\"N\\n\")\n",
"print '%s %.2f %s' %(\"the frictional force that the floor exerts on the ladder is\",f,\"N\\n\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the normal force that the floor exerts on the ladder is 98.00 N\n",
"\n",
"the frictional force that the floor exerts on the ladder is -21.13 N\n",
"\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E9w - Pg 35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#example 10.9w\n",
"#calculation of the contact force exerted by the floor on each leg of ladder\n",
"\n",
"#given data\n",
"theta=60.#angle(in degree) between the two legs\n",
"m=80.#mass(in kg) of the person\n",
"g=9.8#gravitational acceleration(in m/s**2) of the earth\n",
"\n",
"#calculation\n",
"N=m*g/2.\n",
"T=(N*2.*math.tan(90-theta)*57.3)/1.\n",
"\n",
"print '%s %.2f %s' %(\"the contact force exerted by the floor on each leg of ladder\",N,\"N\\n\")\n",
"print '%s %.2f %s' %(\"the tension in the crossbar is\",T,\"N\\n\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the contact force exerted by the floor on each leg of ladder 392.00 N\n",
"\n",
"the tension in the crossbar is -287747.97 N\n",
"\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E12 - Pg 36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#example 10.12\n",
"#calculation of the kinetic energy of the sphere\n",
"\n",
"#given data\n",
"M=200.*10.**-3.#mass(in kg) of the sphere\n",
"vcm=2.*10.**-2.#speed(in m/s) of the sphere\n",
"\n",
"#calculation\n",
"#kinetic energy is K = (Icm*w*w/2) + (M*vcm*vcm/2)\n",
"#taking Icm = (2*M*r*r*w*w/5) and w=vcm/r\n",
"K=(M*vcm*vcm/5.)+(M*vcm*vcm/2.)#kinetic energy\n",
"\n",
"print '%s %.5f %s' %(\"the kinetic energy of the sphere is\",K,\"J\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the kinetic energy of the sphere is 0.00006 J\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E13w - Pg 37"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#example 10.13w\n",
"#calculation of the kinetic energy and angular momentum of the disc\n",
"\n",
"#given data\n",
"M=200.*10.**-3.#mass(in kg) of the disc\n",
"r=4.*10.**-2.#radius(in m) of the disc\n",
"w=10.#angular velocity(in rad/s) \n",
"\n",
"#calculation\n",
"I=(M*r*r)/4.#moment of inertia\n",
"K=(I*w*w/2.)#kinetic energy\n",
"L=I*w#angular momentum\n",
"\n",
"print '%s %.2f %s' %(\"the kinetic energy of the disc is\",K,\"J\")\n",
"print '%s %.2f %s' %(\"\\nthe angular momentum of the disc is\",L,\"J-s\\n\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the kinetic energy of the disc is 0.00 J\n",
"\n",
"the angular momentum of the disc is 0.00 J-s\n",
"\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E14w - Pg 38"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#example 10.14w\n",
"#calculation of the work done by the torque in first two seconds\n",
"#given data\n",
"wzero=20.#initial angular velocity(in rad/s) of the motor\n",
"w=0#final angular velocity(in rad/s) of the motor\n",
"t=4.#time(in s) taken to attain rest position\n",
"I=.20#moment of inertia(in kg-m**2) of the disc about axis of rotation\n",
"t1=2.#time(in s)\n",
"\n",
"#calculation\n",
"alpha=(wzero-w)/t#equation of angular motion in case of deceleration\n",
"tau=I*alpha#torque\n",
"theta=(wzero*t1)-(alpha*t1*t1/2)#equation of angular motion\n",
"W=tau*theta#work done by the torque\n",
"\n",
"print '%s %.2f %s' %(\"the work done by the torque in first two seconds is\",W,\"J\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the work done by the torque in first two seconds is 30.00 J\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E19w - Pg 39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#example 10.19w\n",
"#calculation of the moment of inertia of the system about the axis perpendicular to the rod passing through its middle point\n",
"\n",
"#given data\n",
"m=1.2#mass(in kg) of the sphere\n",
"R=10.*10.**-2.#radius(in cm) of the sphere\n",
"sep=50.*10.**-2.#separation(in m) between the two spheres\n",
"\n",
"#calculation\n",
"d=sep/2.#distance of each sphere from centre\n",
"Icm=(2.*m*R*R)/5.#moment of inertia about diameter\n",
"I=Icm+(m*d*d)#by parallel axis theorem,moment of inertia about given axis \n",
"#since second sphere has same moment of inertia\n",
"Isys=2.*I#moment of inertia of the system\n",
"\n",
"print '%s %.2f %s' %(\"the moment of inertia of the system about the axis perpendicular to the rod passing through its middle point is\",Isys,\"kg-m**2\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the moment of inertia of the system about the axis perpendicular to the rod passing through its middle point is 0.16 kg-m**2\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E22w - Pg 42"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"#example 10.22w\n",
"#calculation of the number of revolutions made by the wheel per second\n",
"\n",
"#given data\n",
"p=220.*10.**-2.#perimeter(in cm) of the wheel\n",
"v=9.*10.**3./(60.*60.)#linear speed(in m/s) of wheel on the road\n",
"\n",
"#calculation\n",
"r=p/(2.*math.pi)#radius of the wheel\n",
"w=v/r#angular speed\n",
"n=w/(2.*math.pi)#number of revolutions\n",
"\n",
"print '%s %.2f %s' %(\"the number of revolutions made by the wheel per second is\",n,\"rev/s\\n\")\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the number of revolutions made by the wheel per second is 1.14 rev/s\n",
"\n"
]
}
],
"prompt_number": 16
}
],
"metadata": {}
}
]
}
|