1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
{
"metadata": {
"name": "",
"signature": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter6, Steam"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1, page 346"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, cos, sin, atan, sqrt, acos\n",
"\n",
"#initialisation of variables\n",
"c=400.0 #steam speed in m/s\n",
"alpla=12.0 #angle in degrees\n",
"cwo=0\n",
"pi=(22.0/7)\n",
"#CALCULATIONS\n",
"u=c*cos(12*(pi/180))/2\n",
"cwi=c*cos(12*(pi/180))\n",
"cfi=c*sin(12*(180/pi))\n",
"thetha=atan(cfi/(cwi-u))*(pi/180)\n",
"cro=sqrt((cfi)**2+(cwi-u)**2)\n",
"phi=acos(u/cro)*(180/pi)\n",
"wo=(cwi-cwo)*u\n",
"ke=(c)**2/2\n",
"eff=wo/ke\n",
"#RESULTS\n",
"print ' blade efficiency is %2f'%eff"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" blade efficiency is 0.956738\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2, page 349"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from math import asin\n",
"#initialisation of variables\n",
"hd=159 #heat drop in kj/kg\n",
"eff=0.89 #and its corresponding efficiency is mentioned\n",
"ra=0.4 #ratio of blade speed to steam speed\n",
"sp=3000 #rotational speed of an impulse turbine wheel in revolutions\n",
"a=20 #angle is 20 degrees\n",
"beff=0.76 #blade efficiency\n",
"cwo=5.4 #m/s\n",
"pi=(22/7)\n",
"bvc=0.82 #blade velocity coefficient\n",
"m=15 #mass is 15 kgs\n",
"#CALCULATIONS\n",
"ci=44.72*sqrt(eff*hd)\n",
"u=ci*ra\n",
"dm=(60*u)/(sp*0.3184)\n",
"cfi=ci*sin(20*(pi/180))\n",
"cwi=ci*cos(20*(pi/180))\n",
"cri=sqrt((cwi-u)**2+(cfi)**2)\n",
"cro=bvc*cri\n",
"x=(beff*(ci)**2)/(2*u) #x=cwi-cwo\n",
"theta=atan((cfi/(cwi-u)))*(180/pi)\n",
"cfo=sqrt((cro)**2-(cwo+u)**2)\n",
"co=sqrt((cwo)**2+(cfo)**2)\n",
"bet=(asin(cfo/co))*(180/pi)\n",
"pd=(m*x*u)/1000\n",
"re=hd-(pd/15)\n",
"phi=asin((cfo/cro))*(180/pi)\n",
"#RESULTS\n",
"print 'mean blade ring diameter is %2fm'%dm #textbook answer is wrong\n",
"print ' \\npower developed is %2fkw'%(pd)\n",
"print ' \\nresidual energy at out let foe friction and nozzle efficiency is %2fkw/kg'%(re )\n",
"print ' \\nblade angles are %2f,%2f,%2f'%(theta,bet,phi)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"mean blade ring diameter is 13.366333m\n",
" \n",
"power developed is 1613.115917kw\n",
" \n",
"residual energy at out let foe friction and nozzle efficiency is 51.458939kw/kg\n",
" \n",
"blade angles are 0.000000,92.007507,35.107859\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3, page 352"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import pi, tan\n",
"#initialisation of variables\n",
"alpha=20 #angle in degrees\n",
"theta=27 #angle in degrees\n",
"m=10 #kgs\n",
"vs=0.4799 #specific volume in m*m*m/kg\n",
"pi=(22/7)\n",
"u=100 #blade speed in m/s\n",
"#CALCULATIONS\n",
"ci=u*tan(27*(pi/180))/(cos(20*(pi/180))*tan(27*(pi/180))-sin(20*(pi/180)))\n",
"x=2*ci*cos(20*(pi/180))-u\n",
"pd=m*x*u\n",
"cf=ci*sin(20*(pi/180))\n",
"a=(m*vs)/cf\n",
"dm=sqrt(a/(0.08*pi))\n",
"h=0.08*dm\n",
"#RESULTS\n",
"print 'power developed is %2f w'%(pd)\n",
"print ' \\narea of flow is %2f m*m'%(a)\n",
"print ' \\nblade height is %2f m'%(h)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"power developed is 600057.358847 w\n",
" \n",
"area of flow is 0.037652 m*m\n",
" \n",
"blade height is 0.030958 m\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4, page 359"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initialisation of variables\n",
"sp=1500 #rotational speed of an impulse turbine wheel in revolutions\n",
"pi=(22/7)\n",
"dm=1.5 #diameter in m\n",
"ra=0.8 #ratio of blade speed to steam speed\n",
"x=159 #x=cwi-cwo in m/s\n",
"m=10 #kgs mass\n",
"cf=50.4 #m*m*m/kg\n",
"vs=1.159 #\n",
"#CALCULATIONS\n",
"u=(pi*dm*sp)/60\n",
"ci=u/ra\n",
"pd=(m*x*u)/1000\n",
"a=(m*vs)/cf\n",
"h=a/(pi*dm)\n",
"#RESULTS\n",
"print 'power developed for steam flow is %2f kw'%(pd)\n",
"print ' \\nheight of the blade is %2f m'%(h)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"power developed for steam flow is 187.392857 kw\n",
" \n",
"height of the blade is 0.048779 m\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5, page 365"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initialisation of variables\n",
"u=170 #blade velocity in m/s\n",
"ra=0.2 #ratio of blade speed to steam speed\n",
"cril=696 #m/s\n",
"co1=0.84 #velocity coefficient \n",
"co2=0.87 #velocity coefficient\n",
"co3=0.90 #velocity coefficient\n",
"cri2=232 #m/s\n",
"#CALCULATIONS\n",
"ci=u/ra\n",
"crol=cril*co1\n",
"ci2=crol*co2\n",
"cro2=cri2*co3\n",
"wd=(1176+344)*u*10**-3\n",
"beff=wd*1000*2/(ci**2)\n",
"#RESULTS\n",
"print 'work developed in the blade is %2f kj/kg'%(wd)\n",
"print ' \\nblading efficiency is %2f'%(beff)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"work developed in the blade is 258.400000 kj/kg\n",
" \n",
"blading efficiency is 0.715294\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6, page 368"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initialisation of variables\n",
"u=250 #blade speed in m/s\n",
"theta=80 #angle in degrees\n",
"alpha=20 #angle in degrees\n",
"oed=786.7 #overall enthalpic drop in kj/kg\n",
"sp=3000 #rotational speed of an impulse turbine wheel in revolutions\n",
"p=6000 #power developed in kw\n",
"rf=1.04 #reheat factor\n",
"ie=2993.4 #kj/kg\n",
"vs=9.28 #m*m*m/kg\n",
"pi=(22/7)\n",
"#CALCULATIONS\n",
"ci=(u*sin(100*(pi/180)))/sin(60*(pi/180))\n",
"x=(2*ci*cos(20*(pi/180)))-u #x=cwi-cwo\n",
"wd=x*u*10**-3\n",
"ed=wd*10\n",
"teff=ed/oed\n",
"seff=teff/rf\n",
"m=p/ed\n",
"ae=ie-ed\n",
"cf=ci*sin(20*(pi/180))\n",
"a=(m*vs)/cf\n",
"dm=(60*u)/(pi*sp)\n",
"h=a/(pi*dm)\n",
"#RESULTS\n",
"print 'enthalpy drop is %2f kj/kg'%(ed)\n",
"print ' \\nturbine efficiency is %2f'%(teff)\n",
"print ' \\nstage efficiency is %2f'%(seff)\n",
"print ' \\nmass flow of steam is %2f kg/s'%(m)\n",
"print ' \\nblade height us %2f m'%(h)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"enthalpy drop is 710.164887 kj/kg\n",
" \n",
"turbine efficiency is 0.902714\n",
" \n",
"stage efficiency is 0.867994\n",
" \n",
"mass flow of steam is 8.448742 kg/s\n",
" \n",
"blade height us 0.161268 m\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7, page 371"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#initialisation of variables\n",
"x1=3025 # according to 20 bar pressure and 300 degrees temp\n",
"x2=2262 #according to 20 bar pressure and 300 degrees temp\n",
"x3=2039 #according to 20 bar pressure and 300 degrees temp\n",
"x4=2896 #according to 20 bar pressure and 300 degrees temp\n",
"x5=2817 #according to 20 bar pressure and 300 degrees temp\n",
"x6=2728 #according to 20 bar pressure and 300 degrees temp\n",
"x7=2699 #according to 20 bar pressure and 300 degrees temp\n",
"x8=2592 #according to 20 bar pressure and 300 degrees temp\n",
"x9=2525 #according to 20 bar pressure and 300 degrees temp\n",
"x10=2430 #according to 20 bar pressure and 300 degrees temp\n",
"x11=2398 #according to 20 bar pressure and 300 degrees temp\n",
"x12=2262 #according to 20 bar pressure and 300 degrees temp\n",
"x13=2192 #according to 20 bar pressure and 300 degrees temp\n",
"#CALCULATIONS\n",
"ieff=(x1-x2)/(x1-x3)\n",
"feff=(x1-x4)/(x1-x5)\n",
"seff=(x4-x6)/(x4-x7)\n",
"teff=(x6-x8)/(x6-x9)\n",
"oeff=(x8-x10)/(x8-x11)\n",
"yeff=(x10-x12)/(x10-x13)\n",
"ced=(x1-x5)+(x4-x7)+(x6-x9)+(x8-x11)+(x10-x13)\n",
"rf=ced/(x1-x3)\n",
"#RESULTS\n",
"print 'cumulative enthaloy drop is %.f'%(ced)\n",
"print ' \\nreheat factor is %0.2f'%(rf)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"cumulative enthaloy drop is 1040\n",
" \n",
"reheat factor is 1.05\n"
]
}
],
"prompt_number": 35
}
],
"metadata": {}
}
]
}
|