1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
{
"metadata": {
"name": "",
"signature": "sha256:3303c10fbdf0badf34a5e53239631d65156a6198f60e9dc97e75e274501b7ad0"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 1 : Introduction"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.1 Page No : 3"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Given:\n",
"n = 4. #Number of cylinders\n",
"d = 68./10 #Bore in cm\n",
"l = 75./10 #Stroke in cm\n",
"r = 8. #Compression ratio\n",
"\n",
"#Solution:\n",
"V_s = (math.pi/4)*d**2*l #Swept volume of one cylinder in cm**3\n",
"cubic_capacity = n*V_s #Cubic capacity in cm**3\n",
"#Since, r = (V_c + V_s)/V_c\n",
"V_c = V_s/(r-1) #Clearance volume in cm**3\n",
"\n",
"#Results:\n",
"print \" The cubic capacity of the engine = %.1f cm**3\"%(cubic_capacity)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The cubic capacity of the engine = 1089.5 cm**3\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.2 Page No : 8"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given:\n",
"ip = 10. #Indicated power in kW\n",
"eta_m = 80. #Mechanical efficiency in percent\n",
"\n",
"#Solution:\n",
"#Since, eta_m = bp/ip\n",
"bp = (eta_m/100)*ip #Brake power in kW\n",
"fp = ip-bp #Friction power in kW\n",
"\n",
"#Results:\n",
"print \" The brake power delivered, bp = %d kW\"%(bp)\n",
"print \" The friction power, fp = %d kW\"%(fp)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The brake power delivered, bp = 8 kW\n",
" The friction power, fp = 2 kW\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.3 Page No : 13"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Given:\n",
"bp = 100. #Brake power at full load in kW\n",
"fp = 25. #Frictional power in kW (printing error)\n",
"\n",
"#Solution:\n",
"eta_m = bp/(bp+fp) #Mechanical efficiency at full load\n",
"#(a)At half load\n",
"bp = bp/2 #Brake power at half load in kW\n",
"eta_m1 = bp/(bp+fp) #Mechanical efficiency at half load\n",
"#(b)At quarter load\n",
"bp = bp/2 #Brake power at quarter load in kW\n",
"eta_m2 = bp/(bp+fp) #Mechanical efficiency at quarter load\n",
"\n",
"#Results:\n",
"print \" The mechanical efficiency at full load, eta_m = %d percent\"%(eta_m*100)\n",
"print \" The mechanical efficiency, \\\n",
"\\na)At half load, eta_m = %.1f percent \\\n",
"\\nb)At quarter load, eta_m = %d percent\"%(eta_m1*100,eta_m2*100)\n",
"\n",
"#Data in the book is printed wrong\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The mechanical efficiency at full load, eta_m = 80 percent\n",
" The mechanical efficiency, \n",
"a)At half load, eta_m = 66.7 percent \n",
"b)At quarter load, eta_m = 50 percent\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.4 Page No : 18"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#Calculations on four stroke petrol engine\n",
"#Given:\n",
"bp = 35. #Brake power in kW\n",
"eta_m = 80. #Mechanical efficiency in percent\n",
"bsfc = 0.4 #Brake specific fuel consumption in kg/kWh\n",
"A_F = 14./1 #Air-fuel ratio\n",
"CV = 43000. #Calorific value in kJ/kg\n",
"\n",
"#Solution:\n",
"#(a)\n",
"ip = bp*100/eta_m #Indicated power in kW\n",
"#(b)\n",
"fp = ip-bp #Frictional power in kW\n",
"#(c)\n",
"#Since, 1 kWh = 3600 kJ\n",
"eta_bt = 1/(bsfc*CV/3600) #Brake thermal efficiency\n",
"#(d)\n",
"eta_it = eta_bt/eta_m*100 #Indicated thermal efficiency\n",
"#(e)\n",
"m_f = bsfc*bp #Fuel consumption in kg/hr\n",
"#(f)\n",
"m_a = A_F*m_f #Air consumption in kg/hr\n",
"\n",
"\n",
"#Results:\n",
"print \" a)The indicated power, ip = %.2f kW \\\n",
"\\nb)The friction power, fp = %.2f kW\"%(ip,fp)\n",
"print \" c)The brake thermal efficiency, eta_bt = %.1f percent \\\n",
"\\nd)The indicated thermal efficiency, eta_it = %.1f percent\"%(eta_bt*100,eta_it*100)\n",
"print \" e)The fuel consumption per hour, m_f = %.1f kg/hr \\\n",
"\\nf)The air consumption per hour, m_a = %d kg/hr\"%(m_f,m_a)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" a)The indicated power, ip = 43.75 kW \n",
"b)The friction power, fp = 8.75 kW\n",
" c)The brake thermal efficiency, eta_bt = 20.9 percent \n",
"d)The indicated thermal efficiency, eta_it = 26.2 percent\n",
" e)The fuel consumption per hour, m_f = 14.0 kg/hr \n",
"f)The air consumption per hour, m_a = 196 kg/hr\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.5 Page No : 23"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given:\n",
"F_A = 0.07/1 #Fuel-air ratio\n",
"bp = 75. #Brake power in kW\n",
"eta_bt = 20. #Brake thermal efficiency in percent\n",
"rho_a = 1.2 #Density of air in kg/m**3\n",
"rho_f = 4*rho_a #Density of fuel vapour in kg/m**3\n",
"CV = 43700. #Calorific value of fuel in kJ/kg\n",
" \n",
"#Solution:\n",
"m_f = bp*3600/(eta_bt*CV/100) #Fuel consumption in kg/hr\n",
"m_a = m_f/F_A #Air consumption in kg/hr\n",
"V_a = m_a/rho_a #Volume of air in m**3/hr\n",
"V_f = m_f/rho_f #Volume of fuel in m**3/hr\n",
"V_mixture = V_f+V_a #Mixture volume in m**3/hr\n",
" \n",
"#Results:\n",
"print \" The air consumption, m_a = %.1f kg/hr\"%(m_a)\n",
"print \" The volume of air required, V_a = %.1f m**3/hr\"%(V_a)\n",
"print \" The volume of mixture required = %.1f m**3/hr\"%(V_mixture) #printing error)\n",
" #Answer in the book is printed wrong\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The air consumption, m_a = 441.3 kg/hr\n",
" The volume of air required, V_a = 367.8 m**3/hr\n",
" The volume of mixture required = 374.2 m**3/hr\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.6 Page No : 28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Given:\n",
"bp = 5. #Brake power in kW\n",
"eta_it = 30. #Indicated thermal efficiency in percent\n",
"eta_m = 75. #Mechanical efficiency in percent (printing error)\n",
"\n",
"#Solution:\n",
"ip = bp*100/eta_m #Indicated power in kW\n",
"CV = 42000. #Calorific value of diesel(fuel) in kJ/kg\n",
"m_f = ip*3600/(eta_it*CV/100) #Fuel consumption in kg/hr\n",
"#Density of diesel(fuel) = 0.87 kg/l\n",
"rho_f = 0.87 #Density of fuel in kg/l\n",
"V_f = m_f/rho_f #Fuel consumption in l/hr\n",
"isfc = m_f/ip #Indicated specific fuel consumption in kg/kWh\n",
"bsfc = m_f/bp #Brake specific fuel consumption in kg/kWh\n",
"\n",
"#Results:\n",
"print \" The fuel consumption of engine, m_f in, \\\n",
"\\na)kg/hr = %.3f kg/hr \\\n",
"\\nb)litres/hr = %.2f l/hr\"%(m_f,V_f)\n",
"print \" c)Indicated specific fuel consumption, isfc = %.3f kg/kWh\"%(isfc)\n",
"print \" d)Brake specific fuel consumption, bsfc = %.3f kg/kWh\"%(bsfc)\n",
"#Data in the book is printed wrong\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The fuel consumption of engine, m_f in, \n",
"a)kg/hr = 1.905 kg/hr \n",
"b)litres/hr = 2.19 l/hr\n",
" c)Indicated specific fuel consumption, isfc = 0.286 kg/kWh\n",
" d)Brake specific fuel consumption, bsfc = 0.381 kg/kWh\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.7 Page No : 33"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Given:\n",
"bp = 5000. #Brake power in kW\n",
"fp = 1000. #Friction power in kW\n",
"m_f = 2300. #Fuel consumption in kg/hr\n",
"A_F = 20./1 #Air-fuel ratio\n",
"CV = 42000. #Calorific value of fuel in kJ/kg\n",
"\n",
"#Solution:\n",
"#(a)\n",
"ip = bp+fp #Indicated power in kW\n",
"#(b)\n",
"eta_m = bp/ip #Mechanical efficiency\n",
"#(c)\n",
"m_a = A_F*m_f #Air consumption in kg/hr\n",
"#(d)\n",
"eta_it = ip*3600/(m_f*CV) #Indicated thermal efficiency\n",
"#(e)\n",
"eta_bt = eta_it*eta_m #Brake thermal efficiency\n",
"\n",
"#Results:\n",
"print \" a)The indicated power, ip = %d kW\"%(ip)\n",
"print \" b)The mechanical efficiency, eta_m = %d percent\"%(eta_m*100)\n",
"print \" c)The air consumption, m_a = %d kg/hr\"%(m_a)\n",
"print \" d)The indicated thermal efficiency, eta_it = %.1f percent \\\n",
"\\ne)The brake thermal efficiency, eta_bt = %.1f percent\"%(eta_it*100,eta_bt*100)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" a)The indicated power, ip = 6000 kW\n",
" b)The mechanical efficiency, eta_m = 83 percent\n",
" c)The air consumption, m_a = 46000 kg/hr\n",
" d)The indicated thermal efficiency, eta_it = 22.4 percent \n",
"e)The brake thermal efficiency, eta_bt = 18.6 percent\n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|