summaryrefslogtreecommitdiff
path: root/sample_notebooks/GauravMittal/chapter2.ipynb
blob: 739819fc539475454f48041f3a0fc7b628af1f32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
{
 "metadata": {
  "name": "",
  "signature": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Ch-2 : DC Machines"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exam:2.1 page 112"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "#Calculate the increase of main field flux in percentage\n",
      "N_1=750 #speed of dc machine(in rpm)\n",
      "E_1=220 #induced emf in dc machine when running at N_1\n",
      "N_2=700 #speed of dc machine second time (in rpm)\n",
      "E_2=250 #induced emf in dc machine when running at N_2\n",
      "F=E_2*N_1/(E_1*N_2) \n",
      "Inc=(F-1) \n",
      "print 'increase in main field flux of the dc machine =',round((Inc*100),2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "increase in main field flux of the dc machine = 21.75\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exam:2.2 page 114"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#a)find the emf generated in a 6 pole machine  b)find speed at which machine generated 550 V emf\n",
      "F_1=0.06 #Flux per pole(in Wb)\n",
      "N_1=250 #speed of the rotor(in rpm)\n",
      "A=2 #number of parllel (paths armature wave wound)\n",
      "P=6 #poles in machine\n",
      "Z=664 #total conductor in machine\n",
      "E_g=P*F_1*N_1*Z/(60*A) #emf generated\n",
      "print \"emf generated in machine =\",E_g,\"Volts\"\n",
      "E_2=550 #new emf generating machine(in V)\n",
      "F_2=0.058 #flux per pole (in Wb) for generating E_2\n",
      "N_2=60*E_2*A/(P*F_2*Z) #new speed at which machine generating E_2(in rpm)\n",
      "print \"new speed of the rotor =\",round(N_2,2),\"rpm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "emf generated in machine = 498.0 Volts\n",
        "new speed of the rotor = 285.63 rpm\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exam:2.3 page 116"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#determine the value of torque in Nw-m\n",
      "F=24 #flux per pole (in m Wb)\n",
      "F_1=F*10**-3 #flux per pole (in Wb)\n",
      "Z=760 #number of conductors in armature\n",
      "P=4 #number of pole\n",
      "A=2 #number of parallel paths\n",
      "I_a=50 #armature cuurrent(in Amp)\n",
      "T_a=0.159*F_1*Z*P*I_a/A #torque develope(in Nw-m)\n",
      "print \"torque developed in machine =\",round(T_a,2),\"Nw-m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "torque developed in machine = 290.02 Nw-m\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exam:2.4 page 119"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate the total torque in Nw-m\n",
      "P=6 #poles \n",
      "A=P #number of parallel paths\n",
      "S=60 #slots in motor\n",
      "C_s=12 #conductor per slot\n",
      "Z=S*C_s #total conductor in machine\n",
      "I_a=50 #armature current(in Amp)\n",
      "F_1=20#flux per pole(in m Wb)\n",
      "F_2=F_1*10**-3 #flux per pole)(in Wb)\n",
      "T=0.15924*F_2*Z*P*I_a/A #total torque (in Nw-m)\n",
      "print 'total torque by motor =',T,'Nw-m' "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "total torque by motor = 114.6528 Nw-m\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exam 2.5 page 132"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import ceil\n",
      "#Calculate the drop in speed when motor takes 51 Amp\n",
      "V=220 #supply voltage(in V)\n",
      "R_sh=220 #shunt field resistance(in Ohm)\n",
      "R_a=0.2 #armature resistance(in Ohm)\n",
      "I_sh=V/R_sh #shunt field current(in Amp)\n",
      "N_1=1200 #starting speed of the motor(in rpm)\n",
      "I_1=5.4 #at N_1 speed current in motor(in Amp)\n",
      "I_a1=I_1-I_sh #armature current at speed N_1(in Amp)\n",
      "E_b1=V-I_a1*R_a #emf induced due to I_a1(in V)\n",
      "I_2=51 #new current which motor taking(in Amp)\n",
      "I_a2=I_2-I_sh #armature current at I_2(in Amp)\n",
      "E_b2=V-I_a2*R_a #emf induced due to I_a2(in V)\n",
      "N_2=E_b2*N_1/E_b1 #speed of the motor when taking I_2 current(in rpm)\n",
      "N_r=ceil(N_1-N_2) #reduction in speed(in rpm)\n",
      "print 'reduction in speed =',N_r,'rpm'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "reduction in speed = 50.0 rpm\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exam:2.6 page 135"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#In a dc machine Calculate (a)induced emf  (b)Electro magnetic torque (c)armature copper loss \n",
      "V=220 #voltage at the armature of dc motor\n",
      "I_a=15 #current through armature(in Amp)\n",
      "R_a=1 #armature resistance(in Ohm)\n",
      "w=100 #speed of the machine(in radian/sec)\n",
      "E=V-I_a*R_a #induced emf(in V)\n",
      "print 'induced emf =',E,'V' \n",
      "T=E*I_a/w #electro magnentic torque developed(in Nw-m)\n",
      "print 'electro magnentic torque developed =',T,'Nw-m'\n",
      "L=(I_a**2)*R_a #Armature copper loss(in Watt)\n",
      "print 'Armature copper loss =',L,'Watt'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "induced emf = 205 V\n",
        "electro magnentic torque developed = 30.75 Nw-m\n",
        "Armature copper loss = 225 Watt\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exam:2.7 page 135"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate the electro magnetic torque\n",
      "E=250 #emf induced in dc machine(in V)\n",
      "I_a=20 #current flowing through the armature(in Amp)\n",
      "N=1500 #speed(in rpm)\n",
      "T_e=0.1591*E*I_a*60/N #torque developed in machine(in Nw-m)\n",
      "print 'electro magnetic torque developed in dc machine =',T_e,'Nw-m'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "electro magnetic torque developed in dc machine = 31.82 Nw-m\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exam:2.8 page 136"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#calculate the gross torque in dc machine\n",
      "P=4 #number of poles \n",
      "Z=1600 #number of armature conductor\n",
      "F=0.027 #flux per pole(in Wb)\n",
      "A=2 #number of parallel paths (wave wound)\n",
      "I=75 #current in machine(in Amp)\n",
      "N=1000 #speed of the motor(in rpm)\n",
      "T=0.1591*P*F*Z*I/A #torque generate in machine(in Nw-m)\n",
      "print 'Torque generated in machine =',T,'Nw-m'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Torque generated in machine = 1030.968 Nw-m\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Exam:2.9 page 140"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Calculate the value of back emf\n",
      "V=230 #applied voltage (in V)\n",
      "R_a=0.1 #armature resistance(in Ohm)\n",
      "I_a=60 #armature current (in Amp)\n",
      "E_b=V-I_a*R_a #back emf(in Volts)\n",
      "print 'back emf produced by machine =',E_b,'V'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "back emf produced by machine = 224.0 V\n"
       ]
      }
     ],
     "prompt_number": 24
    }
   ],
   "metadata": {}
  }
 ]
}