1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3 Semoconductor Devices Fundamentals"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.2 page no:35"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"resistivity of the si doped with n−dopant is : \n",
"0.089 ohm−cm \n"
]
}
],
"source": [
"def resistivity(u,n): #n:doped concentration =10**17 atoms/cubic cm, u: mobility of electrons =700square cm/v−sec .\n",
" q=1.6*10**-19 #q: charge\n",
" Res=1/(q*u*n)# since P is neglegible . \n",
" print \"resistivity of the si doped with n−dopant is : \"\n",
" print \"%0.3f ohm−cm \"%Res \n",
"resistivity(10**17,700)\n",
"# after executing calling resitivity ( u=700 and n =10ˆ17)i .e. , resistivity (10ˆ17 ,700) ;"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.3 page no:35"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"resistivity of intrinsic Ge is : \n",
"2595245510.225 ohm−cm \n"
]
}
],
"source": [
"def resistivity(un,np): # un: electron concentration , up: hole concentration\n",
" q=1.6*10**-19 #in coulumb \n",
" ni=2.5*10*13 # concentration in cmˆ−3 \n",
" Res=1/(q*ni*un*np) # since n=p=ni \n",
" print \"resistivity of intrinsic Ge is : \"\n",
" print \"%0.3f ohm−cm \"%Res \n",
"resistivity(3900,1900)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.4 page no:37"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"hole concentrartion at 300K is : \n",
"2250.000000 per cubic cm \n"
]
}
],
"source": [
"def holeconcentration(ni,Nd): # Nd: donar concentration ; since , Nd>>ni , so Nd=n=10ˆ17 atoms/cmˆ3.\n",
" p=ni**2/Nd\n",
" print \"hole concentrartion at 300K is : \"\n",
" print \"%f per cubic cm \"%p\n",
"holeconcentration(1.5*10**10,10**17);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.5 page no:39"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"resistivity of the copper is : \n",
"2.29779411765e-08 ohm−meter\n"
]
}
],
"source": [
"q=1.6*10**-19;\n",
"n=8.5*10**28;\n",
"u=3.2*10**-3;\n",
"p=1/(n*q*u);\n",
"print \"resistivity of the copper is : \"\n",
"print p,\" ohm−meter\"\n",
"# 2.298D−08 means 2.298∗10ˆ −8"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exa 3.6 page no:41"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cu is: 0.0570814666846 pF\n",
"Ccs is: 0.282102806737 pF\n",
"gm is : 7.7519379845 mA/V\n",
"C1 is: 3.32558139535 pF\n",
"R1 is: 25.8 kilo ohm\n",
"R0 is 645.0 kilo Ohm \n",
"Ru is: 1290.0 Mega Ohm \n"
]
}
],
"source": [
"from math import sqrt\n",
"\n",
"Cuo=0.25; # collector −base depletion region capacitance in pico Farad(pF) for zero bias\n",
"Ccso=1.5 ; # collector −substrate junction capacitance in pico Farad(pF) for zero bias\n",
"q=1.6*10**-19 ; # electron charge in coulomb\n",
"Ic=0.2 ; #collector current in ampere(A)\n",
"k=8.6*10**-5; #in eV/K, where 1eV=1.6∗10ˆ−19\n",
"T=300; # absolute temperature in kelvin (K)\n",
"Vcb=10 ; #forward bias on the junction in volt(v)\n",
"Vcs=15 ; # collector −substrate bias in volt (V)\n",
"Cje=1 ; #depletion region capacitance in pico Farad(pF)\n",
"Bo=200; #small signal current gain\n",
"Tf=0.3; #transit time in forward direction in nano seconds (nS)\n",
"n=2*10**-4; # proportionality constant for Ro and gm\n",
"Vo=0.55; # bias voltage in volt (V)\n",
"Cu=Cuo/sqrt(1+(Vcb/Vo));# collector −base capacitance\n",
"print \"Cu is: \",Cu,\" pF\"\n",
"Ccs=Ccso/sqrt(1+(Vcs/Vo)); # capacitance collector −substrate\n",
"print \"Ccs is: \",Ccs,\"pF\"\n",
"gm=q*Ic/(k*T*1.6*10**-19);# since k is in eV so converting it in Coulomb/Kelvin\n",
"print \"gm is :\",gm,\"mA/V\"# transconductance of the bipolar transistor here\n",
"Cb=Tf*gm;# diffusion capacitance in pico Farad(pF)\n",
"C1=Cb+Cje;#small signal capacitance of bipolar transistor\n",
"print \"C1 is: \",C1,\"pF\"\n",
"R1=Bo/gm;# small signal input resistance of bipolar transistor\n",
"print \"R1 is: \",R1,\" kilo ohm\"\n",
"Ro=1/(n*gm);#small signal output resistance\n",
"print \"R0 is \",Ro,\" kilo Ohm \"\n",
"Ru=10*Bo*Ro/10**3;# collector −base resistance\n",
"print \"Ru is: \",Ru,\"Mega Ohm \""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|