1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
|
{
"metadata": {
"name": "",
"signature": "sha256:90aab70b55d4896f0f22aa66f516161405cb3435a2adc68d32d5e3787e2d9de5"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2:Diode Applications\n"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.1 page : 53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#(a)\n",
"#initialisation of variables\n",
"\n",
"E=10 #E in V\n",
"R=1 #R in Kohm\n",
"\n",
"\n",
"#Calculations\n",
" \n",
"Id=E/R #Eq.(2.2)\n",
"Vd=E\n",
"print \"(a) \\nThe current Ic is = %fmA \"%(Id),\";Vd=0V\"\n",
"print \"The diode voltage is = %fV\"%(Vd),\";Id=0A\"\n",
"print \"\\nThe resulting load line appears in Fig. 2.4. The intersection between the load line \\nand the characteristic curve defines the Q-point as\"\n",
"print \"\\nThe level of VD is certainly an estimate, and the accuracy of ID is limited by the chosenscale. \\nA higher degree of accuracy would require a plot that would be much large and perhaps unwieldy\"\n",
"\n",
"\n",
"#(B)\n",
"print \"\\n(B)\\n\"\n",
"Ir=9.25 #Ir in mA\n",
"Vdq=0.78 #Vdq in v\n",
"Vr=Ir*R\n",
"print \"Vr = Ir*R = Idq*R = %dV\"%(Vr),\"or\"\n",
"Vr = E-Vdq\n",
"print \"Vr = E-Vdq = %fV\" %(Vr)\n",
"print \"\\nThe difference in results is due to the accuracy with which the graph can be read. \\nIdeally,the results obtained either way should be the same.\"\n",
"\n",
"#Graph solution to example 2.1\n",
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"Vd = np.linspace(0.0,10.0)\n",
"Id = np.linspace(0.0,10.0)\n",
"Id= -Vd + 10\n",
"plt.plot(Vd, Id)\n",
"Vd = [0,0,0.1,0.1,0.2,0.2,0.3,0.3,0.3,0.3,0.4,0.5,0.6,0.7]\n",
"Id = [0,0,0,0,0,0,0,0,0.1,0.1,0.3,0.7,2.0,10.0]\n",
"\n",
"plt.plot(Vd, Id,'yo-')\n",
"\n",
"plt.xlabel('Voltage (v)')\n",
"plt.ylabel('current (mA)')\n",
"plt.title('Characteristics of diode')\n",
"plt.grid(True)\n",
"plt.savefig(\"test.png\")\n",
"\n",
"plt.show()\n",
"\n",
"print \"example 2.2:\"\n",
"print \"repeat the example 2.1 for R =2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) \n",
"The current Ic is = 10.000000mA ;Vd=0V\n",
"The diode voltage is = 10.000000V ;Id=0A\n",
"\n",
"The resulting load line appears in Fig. 2.4. The intersection between the load line \n",
"and the characteristic curve defines the Q-point as\n",
"\n",
"The level of VD is certainly an estimate, and the accuracy of ID is limited by the chosenscale. \n",
"A higher degree of accuracy would require a plot that would be much large and perhaps unwieldy\n",
"\n",
"(B)\n",
"\n",
"Vr = Ir*R = Idq*R = 9V or\n",
"Vr = E-Vdq = 9.220000V\n",
"\n",
"The difference in results is due to the accuracy with which the graph can be read. \n",
"Ideally,the results obtained either way should be the same.\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEZCAYAAACervI0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX6B/DPCLgBbgi4AGLubIJiuYuYmRaopRUuKJbd\nFi1bNZer9+pVqJtbaaWZWnmVtGvu3TSkLMMWVNRckhxwIXMBjVWW7++P+c0cQNbhzJw5cz7v14vX\ndWDmzMPT3Hl4vs/5ntEJIQSIiEhz6ikdABERKYMFgIhIo1gAiIg0igWAiEijWACIiDSKBYCISKNY\nAMgsCxYswMSJE5UOQxaHDh1C165dzXrsiBEj8Mknn8gcUeXmzp0Ld3d3tGnTpkb3r1evHn7//XcA\nwLPPPotFixaZ9bxhYWFYt26dWY8l28UCQJX6z3/+g9DQULi6uqJNmzYYMWIEvv/+ewCATqdTODqD\nDRs2YMCAAXU6xoABA3DmzJlq71dR0du7d6/VCmF6ejqWLl2KM2fO4MqVK7V+/HvvvYe5c+ea9dw6\nnc5m/puTfFgAqEJLly7FSy+9hLlz5+LPP//ExYsX8fzzz2PXrl0AADn3DxYXF8t2rNoqKipS7Llr\nKz09HW5ubnBzc1M6FLIXgqicrKws4eLiIrZt21bpfRYsWCAee+wxER0dLVxdXYW/v7/4+eefTT9f\nsmSJ6NChg3B1dRV+fn5i+/btpp+tX79e9O3bV7z00kvCzc1NzJs3T6SmporBgwcLNzc30bJlSzF+\n/HiRlZVlekx6eroYPXq0cHd3F25ubmLatGni9OnTokGDBsLBwUG4uLiI5s2bCyGEyM/PF6+88orw\n8fERnp6e4plnnhF5eXlCCCEOHjwo2rZtK+Li4kSrVq1EdHS0OHjwoPDy8jI9V2xsrGjbtq1wdXUV\nXbp0EV9//bXYt2+fqF+/vnBychIuLi4iODhYCCHEoEGDxIcffmh67Jo1a0S3bt1Mv3dycnKlx6ws\n9xMnThTu7u6iXbt2YtGiRaKkpETs379fNGrUSNSrV0+4uLiImJiYCh//5ptvitatW4u2bduKdevW\nCZ1OJ1JTU4UQQkyaNEnMnTu3TKwdO3YULVq0EJGRkeLKlSumn3311VeiS5cuomnTpmLatGl3/Z7r\n1q0T3bp1E82bNxfDhg0TaWlpFcZDto0FgO6yb98+4ejoKIqLiyu9z/z580XDhg3Fvn37RElJiXjj\njTdE7969TT/funWryMjIEEIIER8fL5ydncUff/whhDAUAEdHR/Huu++K4uJikZeXJ86fPy8OHDgg\n7ty5I65duyYGDhwoZsyYIYQQoqioSAQFBYmXX35Z5Obmivz8fPH9998LIYTYsGGD6N+/f5nYZsyY\nIUaOHCkyMzPFX3/9JSIiIsQbb7whhDAUAEdHRzFr1ixx584dkZeXV6YAnDlzRnh7e5tiT0tLM72B\nLliwQEycOLHMc4WFhYl169YJIYT47LPPRNu2bU2FMDU1VaSlpVV5zPImTpwoRo0aJbKzs4Verxed\nO3c2HT8xMbFMoSpv3759wtPTU5w6dUrk5OSIqKioMgVg8uTJYt68eUIIIb7++mvRsmVLcfToUVFQ\nUCCmT58uBg4cKIQQ4tq1a8LV1VV8/vnnoqioSCxbtkw4Ojqa4vjiiy9Ex44dxZkzZ0RxcbFYtGiR\n6Nu3b6Vxke1iAaC7fPrpp6JVq1ZV3mf+/Pli6NChptunTp0SjRo1qvT+wcHBYseOHUIIQwHw8fGp\n8vjbt28XISEhQgghDh8+LNzd3SssSOvXry9TAEpKSoSzs3OZN9jDhw+L9u3bCyEMBaB+/fqioKDA\n9PPSBeC3334THh4epmJU/neeMGFCme+VLgAPPPCAWLly5V0xVnXM0oqKikT9+vXF6dOnTd/74IMP\nRFhY2F1xViQmJsZU6IQQ4ty5c5UWgClTpoiZM2ea7pudnS2cnJyEXq8XGzduFH369ClzbC8vL9Pv\n+eCDD5r+LYQQxcXFonHjxiI9Pb3S2Mg2cQZAd3Fzc8P169dRUlJS5f08PT1N/27cuDHy8/NNj/n4\n448REhKC5s2bo3nz5jh58iRu3Lhhur+3t3eZY129ehVPPPEEvLy80LRpU0ycONF0/4sXL6Jdu3ao\nV6/6l+u1a9eQm5uLnj17mp57+PDhuH79uuk+7u7uqF+/foWP79ixI5YvX44FCxbA09MTUVFRyMjI\nqPZ5AeDSpUvo0KGD2ce8fv06CgsL0a5dO9P3fHx8cPny5Ro9f0ZGRpm8+vj4VHnf0s/j7OwMNzc3\nXL58GRkZGfDy8ipz/9LHTUtLw4svvmjKr3EmUdM4yXawANBd+vTpgwYNGmD79u2V3qeqM0LS0tLw\n9NNPY9WqVbh58yYyMzMREBBQZnBc/vGzZ8+Gg4MDTp48iVu3buGTTz4xFRNvb2+kp6dXOCwuf5yW\nLVuiUaNG+PXXX5GZmYnMzExkZWXh9u3bNYodAKKionDo0CGkpaVBp9Nh5syZNXqct7c3zp8/X6tj\nlo/dyckJer3e9L309PS73owr07p1a6Snp5d5bGXatGlT5nlycnJw48YNeHl5oXXr1rh48aLpZ0KI\nMrd9fHywZs0aU34zMzORk5OD3r171yhOsh0sAHSXpk2b4p///Ceef/557NixA7m5uSgsLMS+fftM\nb1yiirOAcnJyoNPp0LJlS5SUlGD9+vU4efJklc+ZnZ0NZ2dnNGnSBJcvX8Zbb71l+tm9996L1q1b\nY9asWcjNzUV+fj4OHz4MwNCFXLp0CYWFhQAM571PnToVM2bMwLVr1wAY/jL96quvavS7nzt3DgkJ\nCSgoKECDBg3QsGFDODg4AABatWoFvV5f6e/+1FNP4d///jeSk5MhhMD58+eRnp5e5TFLc3BwwGOP\nPYY5c+YgOzsbaWlpWLZsGSZMmFCj2B977DFs2LABp0+fRm5uLv7xj3+U+bkwLPkCMBSk9evX4/jx\n4ygoKMDs2bPRu3dv+Pj4YMSIETh16hS2b9+OoqIirFy5En/88YfpOM888wwWL16MX3/9FQBw69Yt\nbN26tUYxkm1hAaAKvfzyy1i6dCkWLVoEDw8P+Pj4YPXq1Rg9ejSAis8LN9728/PDK6+8gj59+qBV\nq1Y4efIk+vfvX+Z+5R87f/58JCcno2nTpoiIiMCjjz5quo+DgwN27dqF8+fPw8fHB97e3vjss88A\nAEOGDIG/vz9atWoFDw8PAEBcXBw6duyI3r17o2nTphg6dCjOnTt3V5wVxV5QUIA33ngD7u7uaN26\nNa5fv44lS5YAAMaOHQvAsEQWGhp61zHGjBmDOXPmYNy4cWjSpAkeeeQRZGZmVnnM8t555x04Ozvj\nnnvuwYABAzB+/HjExMRUGbvRgw8+iBkzZiA8PBydO3fGkCFDyty/dN6HDBmChQsX4tFHH0WbNm1w\n4cIFbNmyBYChE9m6dStmzZqFli1b4vz582X++40aNQozZ87EE088gaZNmyIwMBD/+9//Ko2LbJdO\nVPWnXB1MmTIFe/bsgYeHB06cOAEAuHnzJh5//HGkpaXB19cXn332GZo1a2aJpyciompYrAOIiYnB\nl19+WeZ7sbGxpr/GhgwZgtjYWEs9PRERVcNiHQAA6PV6REREmDqArl274ptvvoGnpyf++OMPhIWF\n1WgLPhERyc+qM4CrV6+aTh309PTE1atXrfn0RERUimJDYF5ciohIWY7WfDLj0k+rVq2QkZFhOmuj\nPFfXtsjOrv3VDomItKxDhw6V7kWpiFU7gMjISGzcuBEAsHHjRowaNarC+2VnX8Hx4wIhIQIPPiiQ\nni5M5zCb+zV9+gM4eBB3fb3wwrA6H9uSX/Pnz1c8Blv5Yi6YC+ai6q/U1NRavSdbrABERUWhb9++\nOHv2LLy9vbF+/XrMmjUL+/fvR+fOnZGQkIBZs2ZV+vigIODIEaBvX6BHD2DdOkDUYVw9atQL+PTT\n9mW+9+mnHTBy5HTzD2oFpXdrah1zIWEuJMyF+Sy2BLR58+YKv3/gwIEaH8PJCZg3Dxg5Epg8Gdi6\nFVi7Fih3GZkaCQ9/CMXF2fjoo/Fo3rw/gIYYN246wsMfqv3BiIjsgFVnAOYydgOxsYZuIDYWmDIF\nqO0MedCgcDRu3Bz9+iVaJE5LmDx5stIh2AzmQsJcSJgL81l0H4C5dDodKgsrJQWIiQE8PIA1a2rX\nDRQUXMEvv/RE3741u7ojEZGaVPXeWRHVXQsoKAhISgL69av9bECIQuh0TpYNUGaJiYlKh2AzmAsJ\ncyFhLsynugIAGGYDc+cCX38NrF4NDB8OlLpabaVKStRXAIiILEV1S0DlFRYCcXHAihXVzwZyck7j\n5MnRuO8+Xn6CiOyP3S8BlVe+GxgxovJuQIgi1KvHDoCICLCDAmBUk9mAYQagihOfTLi+KWEuJMyF\nhLkwn90UAKD62YAah8BERJai+hlAZUrPBpYsAZ58Erh16zv8/vtM9OjxvUyREhHZDs3NACpj7AYS\nEoD33jN0A3/+yQ6AiMjIbguAUWCgYTbQvz/w7LNFyMhwqtM1hayN65sS5kLCXEiYC/PZfQEApG4g\nLq4QaWmOVZ4pRESkFXY7A6jI9es7cPnyOuzatbNG+waIiNSEM4AqlJQUwsHByXSm0KpVVe8bICKy\nZ5oqAKVPA5X78wYsheubEuZCwlxImAvzaawAlN0JbPy8AXYDRKRFmpoBZGR8hFu3DqFr1/V3/ayw\n0DATWLmSswEiUifOAKpQ1U5gdgNEpDWaKgA1uRy0rc0GuL4pYS4kzIWEuTCfpgpATa8FxG6AiLRA\nUzOA9PS3UFj4Jzp0eKvGj+FsgIjUgjOAKphzOWh2A0RkrzRYAMy7GJxSswGub0qYCwlzIWEuzKep\nAlDXzwRmN0BE9kRTM4DU1JlwdGyOdu1m1flYnA0Qka3hDKAKcn4mMLsBIlI7jRUA+T8T2NKzAa5v\nSpgLCXMhYS7Mp8ECIP8ngrEbICI10tQM4MyZp9CkyX1o02aq7Mc24myAiJTCGUAVLNUBlMZugIjU\nQmMFQL4hcHXkmg1wfVPCXEiYCwlzYT6NFQD5h8BVYTdARLZMUzOAkydHw9NzItzdH5H92NXhbICI\nLI0zgCrUdSdwXbAbICJbo6kCYI0hcHWMs4F+/Wo2G+D6poS5kDAXEubCfBorANYbAlfFyQmYO9fQ\nDaxezW6AiJShSAFYsmQJ/P39ERgYiHHjxqGgoMAqz2vtIXB1goKApKSqu4GwsDBFYrNFzIWEuZAw\nF+azegHQ6/VYu3YtkpOTceLECRQXF2PLli1WeW5bWAIqz9gNJCQYuoHhw9kNEJF1WL0ANGnSBE5O\nTsjNzUVRURFyc3PRtm1bqzy3kkPg6gQGGrqB/v3LdgNc35QwFxLmQsJcmM/qBaBFixZ45ZVX4OPj\ngzZt2qBZs2a4//77rfLcttgBlFZ+NjB8OPDnn0pHRUT2yuoL4qmpqVi+fDn0ej2aNm2KsWPHYtOm\nTRg/fnyZ+02ePBm+vr4AgGbNmiE4ONi01mes+LW93bixYQhs7uOtdfvmzUTExQFJSWF4/vkw/PRT\nIkaMAAYPto34eNs2bhvZSjxK3TZ+z1bisebtxMREbNiwAQBM75e1YfWNYPHx8di/fz8+/PBDAMAn\nn3yCpKQkrFq1SgrKQhvBjhzpjMDAXWjcuIvsx7aUEyeAyZMBd3dg7VrA21vpiIjIVtn8RrCuXbsi\nKSkJeXl5EELgwIED8PPzs8pz2/oSUEVu3EiscDagReX/8tUy5kLCXJjP6gWge/fuiI6ORmhoKIKC\nggAATz/9tFWe25aHwFWpaDbAM4WIqK40dS2g77/3RGjocTRo0Er2Y1tLYSEQFwesWMFrChFRWTa/\nBKQkW9kJXBfsBohILhorALa1E7gmKlvfNO4i1tJsgGu9EuZCwlyYT4MFQN0dQGnsBoioLjQ1A0hM\ndMTAgXmqXwaqCGcDRMQZQCUMSSlW3RJQTbEbIKLa0lABKIJO5widyv4sru36pj3PBrjWK2EuJMyF\n+TRUANQ3ADYXuwEiqgnNzACKim7hhx+8MWDAbVmPa+s4GyDSDs4AKqHWXcB1xW6AiCqjmQKg1lNA\n5VrftIfZANd6JcyFhLkwn4YKgPp3AddV+U8f42cRE2mbZmYAeXm/4/jxIejd+4Ksx1UrzgaI7A9n\nAJVQ6xKQpZSeDaxaZegGLl1SOioisibNFAC1DoEtvb4ZFAQcOQL07QuEhAAffWS7swGu9UqYCwlz\nYT7NFAB2AJVzcgLmzTN0A+++y26ASCs0MwO4ffsn/Pbbc+jZ8ydZj2tvCgsNM4GVKw0zgpgYzgaI\n1IIzgEpoaSdwXVTUDfBMISL7pLECoL4lIKXWN0vPBmxl3wDXeiXMhYS5MJ9mCoBah8BKKt0NrFrF\nXcRE9kYzM4AbN/bh0qUV6N79S1mPqxXcN0Bk+zgDqAR3AtdN+WsKcTZApH4aKgDqHALb2vqm8ZpC\n/fpZfzZga7lQEnMhYS7Mp7ECwA5ADuwGiOyDZmYAf/zxKW7e3Ac/v02yHlfrOBsgsh2cAVSCHYBl\nsBsgUi8NFQB1DoHVsr5pjdmAWnJhDcyFhLkwn4YKgDqHwGrCboBIXTQzA7h0aQXy8lLRqdNKWY9L\nFeNsgMj6OAOoBHcCWxe7ASLbp5kCoNYhsNrXN+WcDag9F3JiLiTMhfk0VADUOQS2B+wGiGyTZmYA\nFy78HTqdA3x958t6XKodzgaILKe2751VFoDCwkJ89dVX+Pbbb6HX66HT6dCuXTsMHDgQw4YNg6Oj\nZc6qsUQB+P33N+Dg4Ip27WbLelwyT0qK4cNm3N2BtWsBb2+lIyJSP9mGwAsXLkSvXr2we/dudO3a\nFVOmTMGkSZPQpUsX7Nq1C6GhoVi0aJEsQVuDWofA9rq+aZwN9O9f89mAvebCHMyFhLkwX6V/wnfv\n3h1z586FroL+fMqUKSgpKcHu3bstGpyc1DoEtmfG2UBkpKEb2LYNWLOG3QCRtdR6BpCXl4fdu3dj\n7NixZj9pVlYWnnrqKZw6dQo6nQ4fffQRevfuLQVlgSWgc+eeh7OzH9q2fV7W45I8OBsgqjuL7AMo\nKirCnj17MGHCBPj6+mLLli1mBwgAL774IkaMGIHTp08jJSUF3bp1q9PxaoI7gW1b+TOF+OljRJZX\naQEQQiAxMRF/+9vf0L59e6xfvx779+/HhQsX8Pnnn5v9hLdu3cKhQ4cwZcoUAICjoyOaNm1q9vFq\nSq1LQFpb36xqNqC1XFSFuZAwF+artAB4e3tj8eLFGDx4MM6cOYNt27ahcePGaNy4cZ2e8MKFC3B3\nd0dMTAx69OiBqVOnIjc3t07HrAm1DoG1iPsGiKyj0gIwZswYnD9/HvHx8di1axdycnJkecKioiIk\nJyfjueeeQ3JyMpydnREbGyvLsaui1g4gLCxM6RAUU34XcWpqmNU+fczWafl1UR5zYb5KF8WXL1+O\npUuXIjExEZs3b8arr76KrKwsxMfH46GHHoKLi4tZT+jl5QUvLy/06tULgKHQVFQAJk+eDF9fXwBA\ns2bNEBwcbPoPbWz5anP7woUMPPywk9mP521lbjs5Af37J6J1a2D16jBs2wbExCTCw8M24uNt3lby\ndmJiIjZs2AAApvfLWhE1VFBQIHbu3CmioqJEixYtavqwCg0YMECcPXtWCCHE/Pnzxeuvv17m57UI\nq8ZSUiLEtWtfyH5cSzt48KDSIdiM/fsPioULhWjZUogPPxSipETpiJTD14WEuZDU9r2zxqfF1K9f\nHxEREYiIiEBeXl7tK00p77zzDsaPH487d+6gQ4cOWL9+fZ2OVxNqXQIiiaMj9w0QyanafQC7du3C\n3//+d+j1ehQVFRkepNPh9u3blgvKAvsAjh27Hz4+M9GixVBZj0vK4L4BorvJei0gAOjQoQO2b9+O\ngIAA1KtnnYuHWqIAHD06CL6+/0Dz5mGyHpeUxWsKEUlk3wjm5eUFf39/q735W4paLwdtHPhQxbko\nv2/gww/l/yxiW8TXhYS5MF+1M4C4uDgMHz4cgwcPRv369QEYqszLL79s8eDkxJ3A9su4b2DkSGDy\nZMNsgN0AUfWq/bN+3rx5cHFxQX5+PrKzs5GdnY2//vrLGrHJSq1DYOOpX1R9LgIDDd3AgAF1//Qx\nW8fXhYS5MF+1M4CAgACcPHnSWvEAsMwM4McfA+DntxkuLoGyHpds04kThm6AswHSEtlnACNGjMD/\n/ve/OgVlC9TaAXB9U1KbXNh7N8DXhYS5MF+1BWD16tUYPnw4GjZsCFdXV7i6uqJJkybWiE1Wah0C\nk/mcnIA5c4CEBF5hlKgimvlM4B9+8EFIyCE0bNhO1uOSOnDfAGmBbEtAqamp1T64JvexFWpdAiJ5\n8AqjRHertADMnj0bDz/8MNasWYPk5GRkZGTgypUr+OWXX/DBBx/goYcewpw5c6wZa52o9XLQXN+U\nyJGL8lcYVetsgK8LCXNhvkpPjI+Pj8f58+exZcsWzJkzB2lpaQCAdu3aoX///njnnXdwzz33WC3Q\numIHQEalP4vYuG+A1xQiLdLMDODbb53Rr9+fcHBwlvW4pG6FhYaZwMqVnA2Q+lnkM4HtAXcCU0Wc\nnIB58wyzgVWrOBsgbdFEARBCqHYJiOubEkvmIigIOHIE6NtXHbMBvi4kzIX5NFIAigHUg06niV+X\nzMRugLSm2nfEIUOG1Oh7tkytf/0DvM5JadbKhRq6Ab4uJMyF+SotAHl5ebhx4wauXbuGmzdvmr70\nej0uX75szRjrjLuAqbbYDZAWVFoAPvjgA4SGhuLs2bPo2bOn6SsyMhLTpk2zZox1puYBMNc3JUrk\nwla7Ab4uJMyF+SotADNmzMCFCxfw1ltv4cKFC6avlJQUlRYAdgBkHnYDZK9qtA/g8OHDZT4TGACi\no6MtF5TM+wDy8y8hOfk+9O2rrqUrsj3cN0C2TPbPBJ4wYQJ+//13BAcHw8HBwfT9d955x/woqwtK\n5gKQl3cBx44NRp8+etmOSdqWkmLYRezpyV3EZDtq+95Z7cL4L7/8gl9//RU6Ff+Zo+YhcGJiIs9y\n+H+2lAvjbCA21jAbsHY3YEu5UBpzYb5qTwMNCAhARkaGNWKxGDUPgcl2cTZAalftElBYWBiOHTuG\ne++9Fw0aNDA8SKfDzp07LReUzEtA2dnHcfr0RPTqlSLbMYlK42yAbIHsMwDjKValD6zT6TBo0CDz\no6wuKJkLwO3bP+Pcub8hNPQX2Y5JVBHOBkhJsl8MLiwsDL6+vigsLERYWBjuvfdehISE1ClIa1Pz\naaA8x1mihlxYa9+AGnJhLcyF+aotAGvWrMHYsWPxt7/9DQBw6dIljB492uKByUnNQ2BSH84GSC2q\nLQCrVq3Cd999Z/og+M6dO+PPP/+0eGByUvMQmGc3SNSWC0t2A2rLhSUxF+artgA0aNDANPwFgKKi\nItWdEqrmJSBSN3YDZMuqLQCDBg3Cv/71L+Tm5mL//v0YO3YsIiIirBGbbNT6ecAA1zdLU3Mu5O4G\n1JwLuTEX5qu2AMTFxcHd3R2BgYH44IMPMGLECCxatMgascmGHQDZAnYDZGuqPA20qKgIAQEBOHPm\njDVjkv000D//3Ipr1z6Dv/9W2Y5JVBfcN0CWIOtpoI6OjujSpQvS0tLqHJiS1DwEJvtUuhtYvZrd\nACmj2iWgmzdvwt/fH+Hh4YiIiEBERAQiIyOtEZts1LwExPVNiT3mIigISEoC+vWr3WzAHnNhLubC\nfNX+Wbxo0aK7Wgq1nQWk5iEw2T8nJ2DuXGDkSMMu4q1bgbVruYuYLK/aGYC/vz/Onj1rzZhknwFc\nvvwesrOPo0uX92U7JpElFBYCcXHAihWcDVDtyT4D6Nq1q0VmAMXFxQgJCbHKKaXcCUxqYewGjLOB\n4cM5GyDLUWwGsGLFCvj5+VllOUnNQ2Cub0q0lAvjbKB//4pnA1rKRXWYC/NV+664cOFC2Z/00qVL\n2Lt3L+bMmYOlS5fKfvzy1DwEJu0ydgORkUBMDGcDJL8afSaw3MaOHYvZs2fj9u3b+Pe//41du3aV\nDUrmGYBevwglJXm4555/yXZMImvibIBqQvbLQbu4uMDV1RWurq5o0KAB6tWrZ7ownDl2794NDw8P\nhISEyPomXxV2AKR2nA2QJVS7BJSdnW36d0lJCXbu3ImkpCSzn/Dw4cPYuXMn9u7di/z8fNy+fRvR\n0dH4+OOPy9xv8uTJ8PX1BQA0a9YMwcHBpqv+Gdf8anr7hx9SUa9eA7RvD7Mer+Tt0uubthCPkreN\n37OVeJS4HRQExMUlYunSY+jRYwZiY4F77kmETmcb8Slxe/ny5XV6f1Dz7cTERGzYsAEATO+XtWHW\nElBwcDCOHTtW6ycr75tvvrHKElBq6utwcnKDj89M2Y5pLYn8wGsT5kKSmJiIFi3CEBMDuLtrezbA\n14Wktu+d1XYAn3/+uenfJSUl+OWXX9CoUSPzoquA9c4CUucSEF/YEuZCYsxFUpJhNtCjh3ZnA3xd\nmK/aDmDy5MmmN2lHR0f4+vpi6tSp8PDwsFxQMncA585NQ+PGXeDlNV22YxLZkpQUsBsg+TsA4/qS\nmqm5A2B7K2EuJOVzYdw3oMVugK8L81V7FtCkSZOQlZVlup2ZmYkpU6ZYNCi5cScwaQHPFKLaqrYA\nHD9+HM2aNTPdbt68OZKTky0alNzUvBOYf9lImAtJVbmobhexveHrwnzVFgAhBG7evGm6ffPmTRQX\nF1s0KLmpeQmIyBzGbiAhgd0AVa7aAvDKK6+gT58+mDdvHubOnYs+ffrgtddes0ZsslHz5aBLnwOv\ndcyFpKa5CAy0/26ArwvzVVsAoqOj8d///hceHh5o1aoVtm/fjujoaGvEJht2AKRlnA1QZRS5FlB1\n5D4NNCXlIbRt+xzc3B6S7ZhEasRrCtk32a8FZA/UPAQmklP52QA/i1jbNFQA1LkExPVNCXMhqWsu\njLOB2n4WsS3i68J8migAah4CE1lK6dnAqlWGbuDSJaWjImvSxAzgl1/uQ8eOK9C0aW/ZjklkTwoL\nDTOBlSvsFtrHAAAR2klEQVQNM4KYGM4G1IgzgApwJzBR1ZycgHnzDN3Au++yG9AKjRQA9Q6Bub4p\nYS4klspFUBBw5AjQty8QEgJ89JHtzwb4ujCfhgoAOwCimqioG+CZQvZJEzOApKSOCArah8aNO8l2\nTCItKD0b4L4B28cZQAXYARCZp3Q3YDxTiN2A/dBIAVDvEJjrmxLmQmLtXBhnA7a4b4CvC/NppACo\ndwhMZCvKX1OI3YD6aWIG8N13zXHffalwcmoh2zGJtIzXFLJNnAFUgDuBieTFbsA+aKIAqHkIzPVN\nCXMhsZVcGD99TMnZgK3kQo00UgDUOwQmsnXsBtTL7mcAQpTgm28cMGhQCXRcpCSyKM4GlMUZQDnG\n5R+++RNZHrsBdbH7AqD2ATDXNyXMhcTWc2HN2YCt58KW2X0BUPMAmEjN+FnEts/uZwB37lzDTz/5\noV+/a7Icj4hqj7MB6+AMoBzuAiZSHmcDtkkjBUC9S0Bc35QwFxK15sISswG15sIW2H0BUPsQmMje\ncDZgO+x+BpCTcxonT47GffedkeV4RCQfzgbkxRlAOdwFTGS7OBtQlgYKgLqHwFzflDAXEnvLRV1m\nA/aWC2vSSAFgB0Bk69gNWJ/dzwCysr7D77/PRI8e38tyPCKyPM4GzMMZQDnsAIjUh92AdVi9AFy8\neBGDBw+Gv78/AgICsHLlSos+nxBFnAHYCeZCopVc1GQ2oJVcWILV3xmdnJywbNkyBAcHIzs7Gz17\n9sTQoUPRrVs32Z8rIWEPtm6dh8JCPRo3HoZRo15AePhDsj8PEVmOsRuIjARiYoBt24A1awBvb6Uj\nUz/FZwCjRo3C9OnTMWTIENP35JgBJCTswebNL2L8+FTT9zZt6oCoqBUsAkQqxdlA1Wr73qloAdDr\n9Rg0aBBOnToFFxcXKSgZCsALLwzDI498ddf3t28fhhUrvqzTsYlIWSkphm7Aw4PdQGm1fe9UbHE8\nOzsbY8aMwYoVK8q8+RtNnjwZvr6+AIBmzZohODgYYWFhAKQ1v6puX7581XSsY8cM/xscDAD5NXq8\nrdwuvb5pC/Eoedv4PVuJR8nbx44dw4wZM2wmHiVuJyWFIS4O6Np1OZ57LhhvvhkGnc524rPW+8OG\nDRsAwPR+WRuKdACFhYV4+OGHMXz4cNOLuExQ7ABMEhMTTf/htY65kDAXknXrErF6dRjc3YG1a7Xd\nDdj8EpAQApMmTYKbmxuWLVtWcVAWmgF8+mkHjBvHGQCRveFswMDmC8B3332HgQMHIigoyPQ5vUuW\nLMGDDz4oBSXTRrCEhD349NNJaNSoDRwd22DkyOl88yeyY8bZgFa7AZsvADUh507gI0e6IiDgv3B2\n9pPleNbGVl/CXEiYC0n5XGi5G+BO4FKEECgoSEeDBhr7M4BIw4z7BhIS+HkD1bHrDqCw8AaOHOmI\n/v0zZYiKiNSmsBB4801g+XJtdAPsAErJz+df/0Ra5uQEzJnDbqAydl0ACgouokEDH6XDqJPS58Br\nHXMhYS4kNclFYKDhmkL9+8v3WcT2wK4LQH5+Oho2ZAdARPws4orY9QwgNXUmHB2boV27N2SIiojs\nhb2eKcQZQCk8A4iIKlK6G1i1SrufN2DXBSA//yIaNuQMwF4wFxLmQlKXXAQFAUeOAH37anM2YNcF\nwNABqLsAEJFlOTkB8+Zpsxuw2xlASUkRDh1qjAEDclCvHj8SkoiqV1homAmsXKnO2QBnAP/vzp0M\nODm5882fiGpMa92A3RYAexkAc61XwlxImAuJJXKhldmA3RYAexgAE5FytNAN2O0MID39Tdy5cxUd\nO74tU1REpFVqmQ1wBvD/CgrYARCRPOy1G7DbAmAvF4LjWq+EuZAwFxJr5sLeZgN2WwDs4UJwRGR7\n7KkbsNsZwHfftcS9955C/fqeMkVFRFSWrc0GOAMAUFyci+LibDg5uSsdChHZMbV3A3ZZAAzLP17Q\n6dT/63GtV8JcSJgLiS3kQq2zAfW/Q1bA8DkAXP8nIutRYzdgdzOAhIQ9iI+fiZKS62jUqDtGjXoB\n4eEPyRwhEVHllPq8gdq+d9pVAUhI2IPNm1/E+PGppu9t2tQBUVErWASIyOpSUoDJkwFPT2DNGsDb\nwmema3oI/MUXK8u8+QPA+PGp2LHjHYUiqjtbWN+0FcyFhLmQ2HIubH02YFcFQKcrqOQn+VaNg4jI\nqPRsYPVq25oN2FUBEKJBJT9paNU45BQWFqZ0CDaDuZAwFxK15CIoCEhKAvr1s51uwK4KwKhRL2D9\n+iZlvvfppx0wcuR0hSIiIpIYP4s4IcHQDQwfrmw3YFcFYNCgcISGluDzzwdh+/ZB2L59GMaNU/cA\n2JbXN62NuZAwFxI15iIw0NAN9O+vbDfgaP2ntJzr13dg4MC+mD79f0qHQkRUJWM3EBkJxMQAW7cC\na9da/kyh0uzqNNDjxx9Eq1aT4OkZZYGoiIgsQ659A5rbB5CQsAdffLESwG1kZf2M6Oh43H//I5YN\nkIjIAlJSDN2Au7t53YCm9gEYN3498shXeOSRJEyZUoT4+NeRkLBH6dBko8b1TUthLiTMhcSecmE8\nU8haswFVFwB73PhFRNpmnA0Y9w1Y8kwhVRcALWz8Uss5ztbAXEiYC4m95sIa3YCqC4A9bvwiIjKy\ndDegSAH48ssv0bVrV3Tq1AlxcXG1fvzy5QvwwAMtcezYIbz5Ztmf2dvGL3ta36wr5kLCXEi0kAtL\ndQNWLwDFxcWYNm0avvzyS/z666/YvHkzTp8+XePHL1++AAcP/guzZ9/AP/+Zh2HDDNfZePfddnax\n8au8Y8eOKR2CzWAuJMyFRCu5sEQ3YPWNYD/++CM6duwIX19fAMATTzyBHTt2oFu3bmXu16NHIzg7\n69CkSX0UFjqiRQt/3Lx5Crdv30BsrHS/7t0NX0uWZGPFii+t+JtYR1ZWltIh2AzmQsJcSLSWC2M3\nEBdn6Abqsm/A6h3A5cuX4V3q5FYvLy9cvnz5rvt5eeVj4cI8vPbaLfj53UB29reYPfsGnJ0rPm5J\nSbalQiYisilydQNWLwC6Gpapl1+W/n38OPDqq4Z/5+RUfP+//qrsjCB10+v1SodgM5gLCXMh0XIu\nys8Gak1Y2Q8//CCGDRtmur148WIRGxtb5j6NGkEA/OIXv/jFr9p8dejQoVbvx1a/FERRURG6dOmC\nr7/+Gm3atMG9996LzZs33zUDICIiy7L6ENjR0RHvvvsuhg0bhuLiYjz55JN88yciUoBNXgyOiIgs\nz+Z2Atd1k5i9uHjxIgYPHgx/f38EBARg5cqVSoekqOLiYoSEhCAiIkLpUBSVlZWFMWPGoFu3bvDz\n80NSUpLSISlmyZIl8Pf3R2BgIMaNG4eCAvs8EaQiU6ZMgaenJwIDA03fu3nzJoYOHYrOnTvjgQce\nqNHpsTZVAOq6ScyeODk5YdmyZTh16hSSkpKwatUqzeYCAFasWAE/P78an0Vmr1588UWMGDECp0+f\nRkpKimaXT/V6PdauXYvk5GScOHECxcXF2LJli9JhWU1MTAy+/LLsvqfY2FgMHToU586dw5AhQxBb\nesNUJWyqAJTeJObk5GTaJKZFrVq1QnBwMADAxcUF3bp1w5UrVxSOShmXLl3C3r178dRTT5n1QUH2\n4tatWzh06BCmTJkCwDBPa9q0qcJRKaNJkyZwcnJCbm4uioqKkJubi7Zt2yodltUMGDAAzZs3L/O9\nnTt3YtKkSQCASZMm4Ysvvqj2ODZVAGq6SUxr9Ho9jh49ivvuu0/pUBTx0ksv4a233kK9ejb1crW6\nCxcuwN3dHTExMejRowemTp2K3NxcpcNSRIsWLfDKK6/Ax8cHbdq0QbNmzXD//fcrHZairl69Ck9P\nTwCAp6cnrl69Wu1jbOr/UVpv7yuSnZ2NMWPGYMWKFXBxcVE6HKvbvXs3PDw8EBISoum//gHDKdTJ\nycl47rnnkJycDGdn5xq1+fYoNTUVy5cvh16vx5UrV5CdnY1NmzYpHZbN0Ol0NXo/takC0LZtW1ws\ntZ/54sWL8PLyUjAiZRUWFuLRRx/FhAkTMGrUKKXDUcThw4exc+dOtG/fHlFRUUhISEB0dLTSYSnC\ny8sLXl5e6NWrFwBgzJgxSE5OVjgqZfz888/o27cv3Nzc4OjoiEceeQSHDx9WOixFeXp64o8//gAA\nZGRkwMPDo9rH2FQBCA0NxW+//Qa9Xo87d+4gPj4ekZGRSoelCCEEnnzySfj5+WHGjBlKh6OYxYsX\n4+LFi7hw4QK2bNmC8PBwfPzxx0qHpYhWrVrB29sb586dAwAcOHAA/v7+CkeljK5duyIpKQl5eXkQ\nQuDAgQPw8/NTOixFRUZGYuPGjQCAjRs31uyPxjpd18EC9u7dKzp37iw6dOggFi9erHQ4ijl06JDQ\n6XSie/fuIjg4WAQHB4t9+/YpHZaiEhMTRUREhNJhKOrYsWMiNDRUBAUFidGjR4usrCylQ1JMXFyc\n8PPzEwEBASI6OlrcuXNH6ZCs5oknnhCtW7cWTk5OwsvLS3z00Ufixo0bYsiQIaJTp05i6NChIjMz\ns9rjcCMYEZFG2dQSEBERWQ8LABGRRrEAEBFpFAsAEZFGsQAQEWkUCwARkUaxAJBdCA8Px1dffVXm\ne8uXL8dzzz1X6WN8fX1x8+ZN3Lp1C++9956lQwRguLTFggULqrzPyy+/jEOHDlklHtI2FgCyC1FR\nUXddDjg+Ph7jxo2r9DHGa6VkZmZi9erVFo3P6O2338azzz5b5X2effZZvPXWW1aJh7SNBYDswqOP\nPoo9e/agqKgIAEwXCevfvz82b96MoKAgBAYGYtasWWUeJ4TArFmzkJqaipCQEMycORM5OTm4//77\n0bNnTwQFBWHnzp2m+y9cuBBdu3bFgAEDMG7cOLz99tsADBcnGz58OEJDQzFw4ECcPXv2rhgvXryI\nO3fuwNPTE7du3YKvr6/pZzk5OfDx8UFxcTE6deoEvV5fow/0IKoTS29ZJrKWhx9+WOzYsUMIIcSS\nJUvEa6+9Ji5fvix8fHzE9evXRVFRkQgPDxdffPGFEEIIX19fcePGDaHX60VAQIDpOEVFReL27dtC\nCCGuXbsmOnbsKIQQ4scffxTBwcGioKBA/PXXX6JTp07i7bffFkIIER4eLn777TchhBBJSUkiPDz8\nrvg2b94spk2bZro9cuRIcfDgQSGEEFu2bBFTp041/Sw6Olrs3btXrtQQVYgdANmN0stA8fHxiIqK\nwk8//YSwsDC4ubnBwcEB48ePx7ffflvmcaLc1VBKSkrwxhtvoHv37hg6dCiuXLmCq1ev4vvvv8eo\nUaNQv359uLi4mD6eMicnB4cPH8bYsWMREhKCZ555xnRVxtLS09PRunVr0+3HH38c8fHxAIAtW7bg\n8ccfN/2sTZs20Ov1suSFqDKOSgdAJJfIyEi89NJLOHr0KHJzcxESElLm8uKA4c2+uuukb9q0Cdev\nX0dycjIcHBzQvn175OfnQ6fTlSkWxn+XlJSgefPmOHr0aLUxln58REQEZs+ejczMTCQnJyM8PLxW\ncRLVFTsAshsuLi4YPHgwYmJiTMPfXr164ZtvvsGNGzdMnxs7aNCgMo9zdXXFX3/9Zbp9+/ZteHh4\nwMHBAQcPHkRaWhp0Oh369euHXbt2oaCgANnZ2dizZ4/p8e3bt8e2bdsAGN68U1JS7oqvXbt2ZToD\nFxcX9OrVCy+88AIiIiLKvOFnZGSUmREQWQILANmVqKgonDhxAlFRUQCA1q1bIzY2FoMHD0ZwcDBC\nQ0NNSzfGN1w3Nzf069cPgYGBmDlzJsaPH4+ff/4ZQUFB+OSTT0wfvB4aGorIyEgEBQVhxIgRCAwM\nNH0m76ZNm7Bu3ToEBwcjICCgzODYqF+/fnd9gMvjjz+O//znP2WWfwDg6NGj6NOnj7zJISqHl4Mm\nqoWcnBw4OzsjNzcXgwYNwtq1axEcHFzjx4eHh2PTpk1lZgHlnTt3Dq+++mqFRYRITuwAiGrh6aef\nRkhICHr27IkxY8bU6s0fAF599VW8//77Vd7n/fffx+uvv16XMIlqhB0AEZFGsQMgItIoFgAiIo1i\nASAi0igWACIijWIBICLSKBYAIiKN+j91tdZGQm+jrgAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x7f6e4daea050>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"example 2.2:\n",
"repeat the example 2.1 for R =2\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.6 Page : 60"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 2.6\n",
"#For the series diode configuration of Fig. 2.16, determine VD, VR, and ID.\n",
"\n",
"import math\n",
"\n",
"#initialisation of variables\n",
"\n",
"\n",
"E=8 #E in V\n",
"R=2.2 #R in Kohm\n",
"Vd=0.7 #Vd in V \n",
"\n",
"#Calculations\n",
"\n",
"Vr=E-Vd \n",
"Id=Vr/R \n",
"print \"Since the applied voltage establishes a current in the clockwise direction to match thearrow of the symbol \\nand the diode is in the 'on' state,\\n\"\n",
"print \"The diode voltage is = %.1fV\"%(Vd),\";Id=0A\"\n",
"print \"The voltage Vr is = %.1fV\"%(Vr)\n",
"print \"The current Id is = %.2fmA \"%(Id)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Since the applied voltage establishes a current in the clockwise direction to match thearrow of the symbol \n",
"and the diode is in the 'on' state,\n",
"\n",
"The diode voltage is = 0.7V ;Id=0A\n",
"The voltage Vr is = 7.3V\n",
"The current Id is = 3.32mA \n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.7 Page : 60"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 2.7\n",
"#Repeat Example 2.6 with the diode reversed\n",
"\n",
"import math\n",
"\n",
"#initialisation of variables\n",
"\n",
"\n",
"E=8 #E in V\n",
"R=2.2 #R in Kohm\n",
"I=0 #For open circuit\n",
"\n",
"#Calculations\n",
"\n",
"Vr=I*R \n",
"Vd=E-Vr \n",
"print \"Removing the diode, we find that the direction of I is opposite to the arrow in the diode symbol \\nand the diode equivalent is the open circuit no matter which model isemployed.\"\n",
"print \"The result is the network of Fig. 2.17, where ID = 0A due to the open circuit.\\n\"\n",
"print \"The voltage Vr is = %.1fV\"%(Vr)\n",
"print \"The diode voltage is = %.1fV\"%(Vd)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Removing the diode, we find that the direction of I is opposite to the arrow in the diode symbol \n",
"and the diode equivalent is the open circuit no matter which model isemployed.\n",
"The result is the network of Fig. 2.17, where ID = 0A due to the open circuit.\n",
"\n",
"The voltage Vr is = 0.0V\n",
"The diode voltage is = 8.0V\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.8 Page : 61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 2.8\n",
"#For the series diode configuration of Fig. 2.19, determine VD, VR, and ID.\n",
"\n",
"import math\n",
"\n",
"#initialisation of variables\n",
"\n",
"\n",
"E=0.5 #E in volt\n",
"R=1.2 #R in Kohm\n",
"Id=0 #For open circuit\n",
"\n",
"\n",
"#calculation\n",
"\n",
"Vr=Id*R\n",
"Vd=E\n",
"\n",
"print \"The voltage Vr is = %.1fV\"%(Vr)\n",
"print \"The diode voltage Vd is = %.1fV\"%(Vd)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The voltage Vr is = 0.0V\n",
"The diode voltage Vd is = 0.5V\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.9 Page : 62"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 2.9 Page no 62\n",
"\n",
"#initialisation of variables\n",
"\n",
"R=5.6 # resistance in kilo ohm\n",
"E=12\t\t\t # supply voltage in volt\n",
"Vt1=0.7 # threshold voltage of siicon in volt\n",
"Vt2=0.3 # threshold voltage of germanium in volt\n",
"\n",
"print \"Applying KVL rule in fig 2.2,\"\n",
"\n",
"Vo=E-(Vt1+Vt2) # resulting voltage in volt\n",
"\n",
"Id=(Vo/R)\n",
"\n",
"print \"The resulting voltage is = %dV\"%(Vo)\n",
"\n",
"print \"The current through diode is = %.2fmA\"%(Id)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Applying KVL rule in fig 2.2,\n",
"The resulting voltage is = 11V\n",
"The current through diode is = 1.96mA\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.12 Page : 64"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialisation of variables\n",
"\n",
"E=10 #supply voltage in vol't\n",
"R=0.33 #resistance in kilo ohms\n",
"Vd=0.7 # voltage across silicon diode\n",
"\n",
"print\"From figure 2.31 it can be said that both diodes are opened so\"\n",
"\n",
"Vo=0.7 # resulting voltage in volt\n",
"\n",
"I1=(E-Vd)/R\n",
"print\"the value of Id1 is = %.2fmA\"%(I1)\n",
"print\"\\nDiodes are of similar characteristics so\"\n",
"\n",
"Id2=(I1/2)\n",
"print\"the value of Id2 is = %.2fmA\"%(Id2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"From figure 2.31 it can be said that both diodes are opened so\n",
"the value of Id1 is = 28.18mA\n",
"\n",
"Diodes are of similar characteristics so\n",
"the value of Id2 is = 14.09mA\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.13 Page : 65"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialization of variables\n",
"\n",
"E1=20 #supply voltage in V\n",
"E2=4 #second port voltage in V\n",
"Vd=0.7 #thresold voltage\n",
"R=2.2 #R in Kohm\n",
"\n",
"\n",
"#calculation\n",
"\n",
"I = (E1-E2-Vd)/R\n",
"\n",
"print \"Diode D1 turn on and Diode D2 turn off\"\n",
"print \"the resultant current I is = %.2fmA\" %(I)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Diode D1 turn on and Diode D2 turn off\n",
"the resultant current I is = 6.95mA\n"
]
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.14 Page :66"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialization of variables\n",
"E=12 #supply Voltage in V\n",
"Vd=0.3 #thresold voltage in V\n",
"\n",
"\n",
"#calculation\n",
"\n",
"V0 = E-Vd\n",
"\n",
"print \"If initially both were 'on,'' the 0.7-V drop across the silicon diode would not match the 0.3 V \"\n",
"print \"Across the germanium diode as required by the fact that the voltage across parallel elements must be the same.\"\n",
"print \"\\nThe silicon diode will never have the opportunity to capture its required 0.7 V \\nand therefore remains in its open-circuit state.\"\n",
"print \"the resultant Voltage V0 is = %.1fV\" % (V0)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"If initially both were 'on,'' the 0.7-V drop across the silicon diode would not match the 0.3 V \n",
"Across the germanium diode as required by the fact that the voltage across parallel elements must be the same.\n",
"\n",
"The silicon diode will never have the opportunity to capture its required 0.7 V \n",
"and therefore remains in its open-circuit state.\n",
"the resultant Voltage V0 is = 11.7V\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.15 Page :66"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialization of variables\n",
"\n",
"E=20 #supply voltage in V\n",
"VT1=0.7 #thresold voltage\n",
"VT2=0.7 #thresold voltage\n",
"R1=3.3 #R in Kohm\n",
"R2=5.6 #R in Kohm\n",
"\n",
"#calculation\n",
"\n",
"print \"Both Diodes will turn 'on'\"\n",
"print \"So diode voltage will appear over the resistance\"\n",
"\n",
"I1 = (VT2)/R1\n",
"\n",
"print \"the resultant current I2 is = %.3fmA\" %(I1)\n",
"\n",
"print \"\\nApplying Kirchhoff's voltage law around the indicated loop in the clockwise direction yields\"\n",
"\n",
"V2 = E-VT1-VT2\n",
"I2 = V2/R2\n",
"\n",
"print \"the voltage V2 = %.1fV\" %(V2)\n",
"print \"the current I2 = %.2fmA\"%(I2)\n",
"\n",
"#At hte bottom node (a)\n",
"\n",
"ID2=I2-I1\n",
"\n",
"print \"the current I2 = %.3fmA\" %(ID2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Both Diodes will turn 'on'\n",
"So diode voltage will appear over the resistance\n",
"the resultant current I2 is = 0.212mA\n",
"\n",
"Applying Kirchhoff's voltage law around the indicated loop in the clockwise direction yields\n",
"the voltage V2 = 18.6V\n",
"the current I2 = 3.32mA\n",
"the current I2 = 3.109mA\n"
]
}
],
"prompt_number": 35
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.18 Page :71"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#initialization of variables\n",
"\n",
"Vm=20 #peak voltage in V\n",
"VT=0.7 #thresold voltage in V\n",
"\n",
"\n",
"#calculation\n",
"#(a)\n",
"print \"(a)\\nIdeal Diode:\"\n",
"\n",
"Vdc1= -(0.318*Vm) #Vdc=-0.318(Vm-VT)\n",
"\n",
"print \" In this situation the diode will conduct during the negative part of the input\"\n",
"print \"For the full period DC level is = %.2fV\" %(Vdc1)\n",
"print \"\\nThe negative sign indicates that the polarity of the output is opposite to the defined polarity\"\n",
"\n",
"\n",
"#(b)\n",
"\n",
"print \"\\n(b)\\nsilicon Diode:\"\n",
"\n",
"Vdc2= -0.318*(Vm-0.7)\n",
"\n",
"print \"Vdc2 = %.2fV\" %(Vdc2)\n",
"\n",
"#(c)\n",
"\n",
"print \"\\n(c)\\nIf Vm is increased to 200V:\"\n",
"\n",
"Vm = 200 #new peak voltage\n",
"Vdc1= -(0.318*Vm)\n",
"Vdc2= -0.318*(Vm-0.7)\n",
"\n",
"print \"using (a), Vdc = %.2fV\" %(Vdc1)\n",
"print \"using (b), Vdc = %.2fV\" %(Vdc2)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)\n",
"Ideal Diode:\n",
" In this situation the diode will conduct during the negative part of the input\n",
"For the full period DC level is = -6.36V\n",
"\n",
"The negative sign indicates that the polarity of the output is opposite to the defined polarity\n",
"\n",
"(b)\n",
"silicon Diode:\n",
"Vdc2 = -6.14V\n",
"\n",
"(c)\n",
"If Vm is increased to 200V:\n",
"using (a), Vdc = -63.60V\n",
"using (b), Vdc = -63.38V\n"
]
}
],
"prompt_number": 43
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.19 Page :75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#example 2.19 page no.75\n",
"\n",
"import math\n",
"\n",
"#initialization of variables\n",
"Vi=10 #input voltage in V\n",
"\n",
"#calculation\n",
"\n",
"print \"After redrawing the network configuration,\"\n",
"\n",
"V0 = 0.5*Vi\n",
"\n",
"print \"voltage across the resistance V0 = %dV\" %(V0)\n",
"print \"\\nFor the negative part of the input the roles of the diodes will be interchanged\"\n",
"\n",
"#The effect of removing diodes\n",
"\n",
"Vdc = 0.636*(V0)\n",
"print \"The effect of removing diodes:\"\n",
"print \"\\tReduced available DC level = %.2fV\" %(Vdc)\n",
"print \"\\tPIV = the maximum voltage across R is = %dV\" %(V0)\n",
"print \"or half of that required for a half-wave rectifier with the same input\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"After redrawing the network configuration,\n",
"voltage across the resistance V0 = 5V\n",
"\n",
"For the negative part of the input the roles of the diodes will be interchanged\n",
"The effect of removing diodes:\n",
"\tReduced available DC level = 3.18V\n",
"\tPIV = the maximum voltage across R is = 5V\n",
"or half of that required for a half-wave rectifier with the same input\n"
]
}
],
"prompt_number": 38
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|