1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2 Antenna Fundamentals"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2.1 Calculation of Etheta"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Distance between point's is m 200 m\n",
" the wavelength is 10 m\n",
" the current element is 0.00030000000000000003 A/m\n",
" Etheta value is V/m 0.2826\n"
]
}
],
"source": [
"from __future__ import division\n",
"import math\n",
"\n",
"# Etheta = 60∗ pi ∗ I ( dl / lambda ) ∗ ( sin(theta) / r) where thetha = 90\n",
"r =200;\n",
"print ( \" Distance between point's is m\" ,r ,'m') \n",
"lam =10;\n",
"print ( \" the wavelength is \" , lam ,'m') ;\n",
"idl =3*10**-4;\n",
"print ( \" the current element is \" , idl ,\"A/m\") ;\n",
"Etheta =60*3.14*3*10** -3/2\n",
"print(\" Etheta value is V/m\",Etheta)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2.2 Calculation of directive gain"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"radiation resistance is 72 ohm\n",
"the Loss resistance is 8 ohm\n",
"the power gain of antenna is 30\n",
"the Directivity gain is 33.333333333333336\n",
"the Directivity gain in db is given by 15.228787452803376\n"
]
}
],
"source": [
"from __future__ import division\n",
"import math\n",
"\n",
"#etta=Prad/Prad+Ploss=Rrad/Rrad+Rloss\n",
"Rrad=72;\n",
"print(\"radiation resistance is \",Rrad,\"ohm\");\n",
"Rloss=8;\n",
"ettar=72/(72+8);\n",
"print(\"the Loss resistance is \",Rloss,\"ohm\");\n",
"Gpmax=30;\n",
"print(\"the power gain of antenna is \",Gpmax);\n",
"Gdmax=Gpmax/ettar;\n",
"Gdmax1=10 *math.log10(Gdmax);#in db\n",
"print(\"the Directivity gain is \",Gdmax);\n",
"print(\"the Directivity gain in db is given by \",Gdmax1);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2.3 Radiation Resistance calculation"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the elemental length is given by 0.1\n",
"the radiation resistance is 7.895683520871488 ohm\n"
]
}
],
"source": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Rrad=80*pi^2*(dl/lambda)^2\n",
"dl=0.1;\n",
"print(\"the elemental length is given by \",dl);\n",
"Rrad=80*(math.pi)**2*(0.1)**2;\n",
"print(\"the radiation resistance is \",Rrad,\"ohm\");\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2.4 Rms current calculation"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the wavelength is 3.0 m\n",
"the Radiated power is 100 W\n",
"the elemental length is 0.01 m\n",
"the Irms current is 106.76438151257656 A\n"
]
}
],
"source": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Prad=80*(pi)**2*(dl/lambda)*(Irms)**2;\n",
"frequency=100*10**6;\n",
"lamda=(3*10**8)/(100*10**6); #lamda=c/f;\n",
"print(\"the wavelength is \",lamda,\"m\");\n",
"Prad=100;\n",
"print(\"the Radiated power is \",Prad,\"W\");\n",
"dl=0.01;\n",
"print(\"the elemental length is \",dl,\"m\");\n",
"Irms2=(3/0.01)**2*100/(80*(math.pi)**2);\n",
"Irms=math.sqrt(Irms2);\n",
"print(\"the Irms current is \",Irms,\"A\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2.5 Effective aperture calculation"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"the electric field is 0.05 V/m\n",
"the average power is 3.315727981081154e-06 W\n",
"the maximum effective aperture area is 0.603318250377074 m^2\n"
]
}
],
"source": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Pavg=0.5*|E|^2/etta0,Prmax=2*10^-6W,Aem=Prmax/Pavg\n",
"\n",
"E=50*10**-3;\n",
"Etta0=120*(math.pi);\n",
"print(\"the electric field is \",E,\"V/m\");\n",
"Pavg=0.5*(50*10**-3)**2/(120*(math.pi));\n",
"print(\"the average power is \",Pavg,\"W\");\n",
"Aem=(2*10**-6)/(3.315*10**-6);\n",
"print(\"the maximum effective aperture area is \",Aem,\"m^2\");\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|