1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
{
"metadata": {
"name": "",
"signature": "sha256:b659456964884efc24c6f36b543fc4c77e2e36dfdbc033ad2f4c3e2f2bce479c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2 - Amplitude Modulation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1 - pg 51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calcualate the carrier frequency\n",
"#given\n",
"import math\n",
"L = 50*10**-6#in henry\n",
"C = 1*10**-9#in farads\n",
"#calculation\n",
"F_c = 1/(2.*math.pi*math.sqrt(L*C))/1000.;\n",
"#results\n",
"print '%s %d %s' %(\"Carrier frequency F_c =\",math.ceil(F_c),\" kHz\")\n",
"print(\"Now , it is given that the highest modulation frequency is 8KHz \");\n",
"print(\"Therefore, the frequency range occupied by the sidebands will range from 8KHz \\nabove to 8KHz below the carrier frequency, extending fom 712KHz to 720KHz.\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Carrier frequency F_c = 712 kHz\n",
"Now , it is given that the highest modulation frequency is 8KHz \n",
"Therefore, the frequency range occupied by the sidebands will range from 8KHz \n",
"above to 8KHz below the carrier frequency, extending fom 712KHz to 720KHz.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2 - pg 51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the modulation index, upper and lower sideband frequency, bandwidth of modulation signal\n",
"\n",
"\n",
"#given\n",
"#v_m = 10*sin(2*%pi*10^3*t)\n",
"#by comparing with v_m = V_m*sin(2*%pi*f_c*t) we get\n",
"V_m = 10.#in volts\n",
"f_m = 1*10**3#in hertz\n",
"V_c = 20.#in volts\n",
"f_c = 1*10**4#in hertz\n",
"\n",
"#calculations\n",
"m_a = V_m/V_c;#modulation index formula\n",
"m_a1 = m_a*100;#percentage modulation index\n",
"f_usb = f_c + f_m;#Upper sideband\n",
"f_lsb = f_c - f_m;#lower sideband\n",
"A = (m_a*V_c)/2#amplitude of upper as well as lower sideband\n",
"B = 2*f_m;#bandwidth of the modulation signal\n",
"\n",
"#results\n",
"print '%s %.2f' %(\"i.a.Modulation index= \",m_a);\n",
"print '%s %d %s' %(\" b.Percentage modulation index=\",m_a1,\" percent\");\n",
"print '%s %.f %s' %(\"ii.a.Upper sidebandfrequency=\",f_usb,\"Hz\");\n",
"print '%s %.f %s' %(\" b.Lower sideband frequency=\",f_lsb,\"Hz \"); \n",
"print '%s %.f %s' %(\"iii.Amplitude of Upper sideband and Lower sideband =\",A,\"V\");\n",
"print '%s %.f %s' %(\"\\iv.Bandwidth of the modulation signal=\",B,\"Hz\");\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i.a.Modulation index= 0.50\n",
" b.Percentage modulation index= 50 percent\n",
"ii.a.Upper sidebandfrequency= 11000 Hz\n",
" b.Lower sideband frequency= 9000 Hz \n",
"iii.Amplitude of Upper sideband and Lower sideband = 5 V\n",
"\\iv.Bandwidth of the modulation signal= 2000 Hz\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3 - pg 54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the total power in the amplitude modulated wave\n",
"\n",
"\n",
"#given\n",
"m_a = .75;#modulation index\n",
"P_c = 400.;#carrier power in watts\n",
"\n",
"#calculation\n",
"P_t = P_c*(1+(m_a**2/2));#total power \n",
"\n",
"#results\n",
"print \"Total power in the amplitude modulated wave (in W) = \",P_t;\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total power in the amplitude modulated wave (in W) = 512.5\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4 - pg 54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the carrier power\n",
"#given\n",
"P_t = 10*10**3;#total power in watts\n",
"m_a = .6;#modulation index\n",
"#calculation\n",
"P_c = (P_t/(1+(m_a**2/2)));# carrier power\n",
"#results\n",
"print \"Carrier power (in kW) = \",round(P_c/1000.,2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Carrier power (in kW) = 8.47\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5 - pg 55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the modulation index and antenna current\n",
"\n",
"import math\n",
"#given\n",
"I_t = 8.93;#total modulated current in ampers\n",
"I_c= 8;#carrier or unmodulated current in ampers\n",
"#calculation\n",
"m_a = math.sqrt(2*((I_t/I_c)**2 -1));#formula for modulation index\n",
"M_a=m_a*100;#percentage modulation\n",
"#for \n",
"m_a1 = .8;#given modulation index\n",
"\n",
"#calculation\n",
"I_t1 = I_c*math.sqrt(1+(m_a1**2/2));#new antenna current \n",
"\n",
"#results\n",
"print \"i.a. Modulation index = \",round(m_a,3)\n",
"print \"b.Percentage modulation index (percent) = \",round(M_a,1)\n",
"print \"ii. Antenna current (in A) = \",round(I_t1,2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i.a. Modulation index = 0.701\n",
"b.Percentage modulation index (percent) = 70.1\n",
"ii. Antenna current (in A) = 9.19\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6 - pg 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#calculate the carrier signal current, modulation indexes\n",
"import math\n",
"#given\n",
"I_t1 = 10#antenna current in amps\n",
"m1 = .3#modulation index\n",
"I_t2 = 11#increased antenna current\n",
"\n",
"#calculation\n",
"I_c = (I_t1/(1+(m1**2/2))**.5);#formula for carrier signal current\n",
"m_t = math.sqrt(2*((I_t2/I_c)**2 -1));#formula for modulation index\n",
"m2 = math.sqrt(m_t**2 - m1**2);\n",
"m3 = m2*100;#percentage modulation index\n",
"\n",
"#results\n",
"print \"i.Carrier signal current (in A) = \",round(I_c,2)\n",
"print \"ii.Modulation index of signal = \",round(m_t,2)\n",
"print \"iii.a.Modulation index of second signal = \",round(m2,2)\n",
"print \"b.Percentage modulation index of second signal (percent) = \",round(m3,0)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"i.Carrier signal current (in A) = 9.78\n",
"ii.Modulation index of signal = 0.73\n",
"iii.a.Modulation index of second signal = 0.66\n",
"b.Percentage modulation index of second signal (percent) = 66.0\n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|