summaryrefslogtreecommitdiff
path: root/sample_notebooks/AshvaniKumar/ch10.ipynb
blob: d561732319ccbfd54e032c8222b20195a2475aea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 10 - Other Power Amplifiers"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 10.1 Page No 425"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The value of P_DQ = 11.25 mW\n",
      "The value of P_Dmax = 112.50 mW\n",
      "The value of P_Lmax = 562.50 mW\n"
     ]
    }
   ],
   "source": [
    "# given data\n",
    "V_CEQ= 7.5##  V\n",
    "R_L= 50##  Ω\n",
    "I_Csat= V_CEQ/R_L##  A\n",
    "I_CQ= 0.01*I_Csat##  A\n",
    "P_DQ= V_CEQ*I_CQ##  W\n",
    "PP= 2*V_CEQ##  V\n",
    "P_Dmax= PP**2/(40*R_L)##  W\n",
    "P_Lmax= PP**2/(8*R_L)##  W\n",
    "# The value of P_DQ \n",
    "P_DQ= P_DQ*10**3##  mW\n",
    "# The value of P_Dmax \n",
    "P_Dmax= P_Dmax*10**3##  mW\n",
    "# The value of P_Lmax \n",
    "P_Lmax= P_Lmax*10**3##  mW\n",
    "print \"The value of P_DQ = %.2f mW\"%P_DQ\n",
    "print \"The value of P_Dmax = %.2f mW\"%P_Dmax\n",
    "print \"The value of P_Lmax = %.2f mW\"%P_Lmax"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 10.2 Page No 425"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The efficiency of amplifier = 74.03 %\n"
     ]
    }
   ],
   "source": [
    "# given data\n",
    "V_CC= 15##  V\n",
    "I_Csat= 150##  mA\n",
    "P_Lmax= 563##  mW\n",
    "I= 0.02*I_Csat##  mA\n",
    "Idc= 0.318*I_Csat##  mA\n",
    "I_CC= I+Idc##  mA\n",
    "P_CC= V_CC*I_CC##  mW\n",
    "# The efficiency of amplifier \n",
    "Eta= P_Lmax/P_CC*100##  %\n",
    "print \"The efficiency of amplifier = %.2f %%\"%Eta\n",
    "\n",
    "# Note: The answer in the book is not accurate"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 10.3 Page No 426"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFnxJREFUeJzt3Xvw5XV93/HnSy4qXjBxhcKCAw7gCPGyZUqJxPCrmdEF\nrea2CqYVbcfQphAV4limKptgE5xpUyRY1BZXY+OChg3BSrzE+FNjqsYVhHCpYiGA4NKVS4GlFuXd\nP8532cOP3+Wc8zvf37k9HzNn9ly+v3M+e+bs77PP7+2kqpAk6UmjHoAkaTw4IUiSACcESVLDCUGS\nBDghSJIaTgiSJMAJQQIgyUeTnNfC884luX2Zxx9N8rzm+sVJ3jXsMUi9ckLQREsyn+SeJPsu8tgb\nknwryQNJ7kxyVZITlniqai4jU1X/uqreO8oxaLY5IWhiJTkMOA64G3jNgsfOAv4T8F7gAOBQ4AML\nl1v4lG2MU5oUTgiaZG8E/hL4OHDa7juT7A/8LvBbVXVFVT1cVT+tqs9U1Tt7eeIkb0nyvSQ/SvLn\nSQ7qeuz9SW5Lcn9TIL/Q9dhTm9VP9yS5HvhHvf5luldbNaua7khyVpIdTeG8qWvZJyf5D0n+PskP\nm9VNT+n1taTFOCFokr0RuAz4JPDKJM9p7v954CnAnw3ypEleDvw+sAk4CPh74NKuRb4JvBj4GeAT\nwKe6VlmdCxwOPA94JZ2JqtdVUQtXWx0IPBM4GPiXwAeayQ7gfOCIZhxHAOuB9/T8l5QW4YSgidT8\nr3w9cGVVfQ+4AfiN5uFnAzur6tE+n3b3L+PfAC6pqmuq6v8B5wA/n+S5AFX1J1V1b1U9WlV/CDwZ\neH7zs5uAf19V91XVHcD76W9VVPeyjwC/19TNXwAPAs9PEuAtwFnN6zwI/AFwSp9/X+lxnBA0qU4D\nPl9VDzS3P8We1UY/AtYlGfTzvbsKAKiqh5rnXA+Q5HeS3JDkviT3AvsD65rFDwa69yq6bcAxAPxo\nwaS2C3g68BxgP2B7knubMfxF1xikgew96gFI/UryVOB1wJOS3NXc/WTgWUleBPwP4MfArwCXD/AS\ndwKHdb3e0+hUxw+SvAx4B/Dyqrq+efwe9vzP/i7gucCNze3n9vnavaxe2gk8DBxdVXettLDUKwtB\nk+iXgZ8AL6CzDv3FzfWvAm+sqvvprE//QJLXJtkvyT5JTkryviWeM+z5pb4VeHOSFyd5Mp3tCV+v\nqtuAZzSvvTPJvkneQ2c9/26fBM5J8qwkhwBn9vH36h7Dkppq+C/ABbu3myRZn+QVfbyW9AROCJpE\nbwQ+UlV3VNXdzWUHcBHwhiRPatbtnwW8i85uqbcBv8XSG5of26BbVV8E3k2nLu6ks5F49/r5zzaX\n7wK30vmfevdqod+ls7rplma5P2b5//XXgusLby/lncDNwNeT3A98AThqmeWlFaWtL8hJciidfwwH\n0Plgf7iqLlxkuQuBk+isH31TVV3dyoAkSctqcxvCI8Dbq+qaJE+nswHsC1W1e90qSU4GjqiqI5P8\nY+Bi4PgWxyRJWkJrq4yq6odVdU1z/UE6G9kOXrDYa4CPNct8g85GwQPbGpMkaWlrsg2hOcXABuAb\nCx5az+N30bsDOGQtxiRJerzWJ4RmddGfAm9tSuEJiyy4PdITjEnSrGr1OIQk+9DZU+O/VdUViyzy\nAzonHdvtkOa+hc/jJCFJA6iqno+Ub60QmsPrLwFuqKoLlljsSjq7EJLkeOC+ZvfBJ7j88uKgg4qz\nzioeeqio8jLo5dxzzx35GKbl4nvp+znOl361ucroBOCfAf8kydXN5aQkpyc5HaCqrgL+V5KbgQ/R\n2U98Ub/6q3DttXDnnfCSl8DXvtbiyCVpBrW2yqiq/poeJpyqOqPX51y3DrZuhW3bYNMmOPVUOO88\n2G+/VQ1VksSEHqlsLazO3NzcqIcwNXwvh8v3c7RaO1J5mJLUUuPctg3OOMNakKSFklDjsFF5rVgL\nkjQcE18I3awFSdpj5gqhm7UgSYObqkLoZi1ImnUzXQjdrAVJ6s/UFkI3a0HSLLIQFmEtSNLKZqIQ\nulkLkmaFhbACa0GSFjdzhdDNWpA0zSyEPlgLkrTHTBdCN2tB0rSxEAZkLUiadRbCIqwFSdPAQhgC\na0HSLLIQVmAtSJpUFsKQWQuSZoWF0AdrQdIksRBaZC1ImmYWwoCsBUnjzkJYI9aCpGljIQyBtSBp\nHFkII2AtSJoGFsKQWQuSxoWFMGLWgqRJZSG0yFqQNEoWwhixFiRNEgthjVgLktaahTCmrAVJ485C\nGAFrQdJasBAmgLUgaRxZCCNmLUhqi4UwYawFSePCQhgj1oKkYbIQJpi1IGmULIQxZS1IWi0LYUpY\nC5LWmoUwAawFSYOwEKaQtSBpLVgIE8ZakNQrC2HKWQuS2mIhTDBrQdJyLIQZYi1IGiYLYUpYC5IW\nshBmlLUgabVanRCSfCTJjiTXLfH4XJL7k1zdXN7V5nim3bp1sHUrnH8+bNoEZ58Nu3aNelSSJkXb\nhbAF2LjCMl+uqg3N5b0tj2cmWAuSBtHqhFBVXwXuXWGxntdvqXfWgqR+jXobQgEvTfKdJFclOXrE\n45k61oKkXu094tf/NnBoVe1KchJwBXDUYgtu3rz5setzc3PMzc2txfimwu5a2LatUwvuiSRNp/n5\neebn5wf++dZ3O01yGPDpqnphD8veAhxbVfcsuN/dTodk504480zYvh22bIETThj1iCS1ZaJ2O01y\nYJI014+jM0Hds8KPaRXctiBpKW3vdroV+Bvg+UluT/Ivkpye5PRmkV8HrktyDXABcEqb49EebluQ\ntJBHKsujnKUpNVGrjDQerAVJYCFoAWtBmh4WglbFWpBml4WgJVkL0mSzEDQ01oI0WywE9cRakCaP\nhaBWWAvS9LMQ1DdrQZoMFoJaZy1I08lC0KpYC9L4shC0pqwFaXpYCBoaa0EaLxaCRsZakCabhaBW\nWAvS6FkIGgvWgjR5LAS1zlqQRsNC0NixFqTJYCFoTVkL0tqxEDTWrAVpfFkIGhlrQWqXhaCJYS1I\n48VC0FiwFqThsxA0kawFafQsBI0da0EaDgtBE89akEbDQtBYsxakwVkImirWgrR2LARNDGtB6o+F\noKllLUjtshA0kawFaWUWgmaCtSANn4WgiWctSIuzEDRzrAVpOCwETRVrQdrDQtBMsxakwVkImlrW\ngmadhSA1rAWpP31NCEmOSPLuJNe3NSBpmNatg61b4fzzYdMmOPts2LVr1KOSxtOKE0KS9UnOSvK3\nwN8BewGntD4yaYisBWllS25DSHI6cCpwAPCnwKeAK6vq8LUb3mNjcRuChsZtC5oVw9yGcBHwAHBq\nVb2nqq5b9eikMWAtSItbbkI4CLgKuDDJjUnOA/ZZm2FJ7XLbgvRES04IVbWzqi6uqhOBVwD3AzuS\n3JTk99dshFKLrAVpj76PQ0hyFHBKVf1eO0Na9DXdhqDWuW1B06bfbQgemCZ12bkTzjwTtm+HLVvg\nhBNGPSJpcE4I0hBYC5oGHqksDYHbFjSLeiqEJOuBw+gclBagquorPfzcR4BXAXdX1QuXWOZC4CRg\nF/Cmqrp6kWUsBI2MtaBJNfRCSPI+4GvAvwPeAfxO82cvtgAbl3nuk4EjqupI4DeBi3t8XmnNWAua\nFSsWQpLvAi+sqh8P9ALJYcCnFyuEJB8EvlRVlzW3bwJOrKodC5azEDQWrAVNkja2IXwf2HfwIS1r\nPXB71+07gENaei1p1awFTbO9e1jmYeCaJF8EdldCVdVvD2kMC2evRVNg8+bNj12fm5tjbm5uSC8v\n9Wf3Uc7btnWOcrYWNC7m5+eZn58f+Od7WWX0pkXurqr6WE8vsPIqo/mqurS57SojTRSPW9A463eV\n0YqFUFUfXdWIlnclcAZwaZLjgfsWTgbSOLMWNE2WO/31p6pqU5LFznJaVfWiFZ882QqcCKwDdgDn\n0pwgr6o+1CxzEZ09kR4C3lxV317keSwEjT1rQeNmaEcqJzm4qu5sVvk8QVXdOsgAB+GEoEninkga\nF566QhoD1oLGgROCNEasBY2S5zKSxojHLWiSLDkhJDkgyTGL3H9Mkue0OyxpevjtbJoUyxXCH9HZ\nO2ihZwPvb2c40vSyFjTultvLaHtVHbvEY9dX1RPqoS1uQ9C0cduC1sIwtyE8Y5nH9ul9SJIWshY0\njpabEG5O8qqFdzanrP5+e0OSZoPbFjRulltldBTw34G/AbbTOQndscBLgVdX1f9cs0G6ykhTzuMW\n1IahHoeQ5CnAG4Cfo3MW0uuBrVX18GoH2g8nBM0Kty1omDwwTZpw1oKGZZjnMnqQJb6bgM7J7Z45\nwPgG4oSgWWQtaLWGtpdRVT29qp6xxGXNJgNpVrknktaaq4ykCWAtaBCey0iaQtaC1oKFIE0Ya0G9\nshCkKWctqC0WgjTBrAUtx0KQZoi1oGGyEKQpYS1oIQtBmlHWglbLQpCmkLUgsBAkYS1oMBaCNOWs\nhdllIUh6HGtBvbIQpBliLcwWC0HSkqwFLcdCkGaUtTD9LARJPbEWtJCFIMlamFIWgqS+WQsCC0HS\nAtbC9LAQJK2KtTC7LARJS7IWJpuFIGlorIXZYiFI6om1MHksBEmtsBamn4UgqW/WwmSwECS1zlqY\nThaCpFWxFsaXhSBpTVkL08NCkDQ01sJ4sRAkjYy1MNksBEmtsBZGz0KQNBashcljIUhqnbUwGhaC\npLFjLUyGVieEJBuT3JTke0neucjjc0nuT3J1c3lXm+ORNDrr1sHWrXD++bBpE5x9NuzaNepRqVtr\nE0KSvYCLgI3A0cCpSV6wyKJfrqoNzeW9bY1H0niwFsZXm4VwHHBzVd1aVY8AlwKvXWS5ntdvSZoO\n1sJ4anNCWA/c3nX7jua+bgW8NMl3klyV5OgWxyNpzFgL42XvFp+7l92Cvg0cWlW7kpwEXAEctdiC\nmzdvfuz63Nwcc3NzQxiipFHbXQvbtnVqwT2RBjc/P8/8/PzAP9/abqdJjgc2V9XG5vY5wKNV9b5l\nfuYW4NiqumfB/e52Ks2AnTvhzDNh+3bYsgVOOGHUI5ps47Tb6beAI5MclmRf4PXAld0LJDkwSZrr\nx9GZoO554lNJmgVuWxit1iaEqvoJcAbwOeAG4LKqujHJ6UlObxb7deC6JNcAFwCntDUeSZPDbQuj\n4ZHKksaaRzkPbpxWGUnSqlkLa8dCkDQxrIX+WAiSppa10C4LQdJEshZWZiFImgnWwvBZCJImnrWw\nOAtB0syxFobDQpA0VayFPSwESTPNWhichSBpas16LVgIktSwFvpjIUiaCbNYCxaCJC3CWliZhSBp\n5sxKLVgIkrQCa2FxFoKkmTbNtWAhSFIfrIU9LARJakxbLVgIkjSgWa8FC0GSFjENtWAhSNIQzGIt\nWAiStIJJrQULQZKGbFZqwUKQpD5MUi1YCJLUommuBQtBkgY07rVgIUjSGpm2WrAQJGkIxrEWLARJ\nGoFpqAULQZKGbFxqwUKQpBGb1FqwECSpRaOsBQtBksbIJNWChSBJa2Sta8FCkKQxNe61YCFI0gis\nRS1YCJI0AcaxFiwESRqxtmrBQpCkCTMutWAhSNIYGWYtWAiSNMFGWQsWgiSNqdXWgoUgSVNirWvB\nQpCkCTBILVgIkjSF1qIWLARJmjC91sJYFUKSjUluSvK9JO9cYpkLm8e/k2RDm+ORpGnQVi20NiEk\n2Qu4CNgIHA2cmuQFC5Y5GTiiqo4EfhO4uK3xaI/5+flRD2Fq+F4Ol+9n79atg61b4fzzYdMmOPts\n2LVrdc/ZZiEcB9xcVbdW1SPApcBrFyzzGuBjAFX1DeBZSQ5scUzCf3TD5Hs5XL6f/RtmLbQ5IawH\nbu+6fUdz30rLHNLimCRp6gyrFtqcEHrdCrxwg4dbjyVpAAtroV+t7WWU5Hhgc1VtbG6fAzxaVe/r\nWuaDwHxVXdrcvgk4sap2LHguJwlJGkA/exnt3eI4vgUcmeQw4E7g9cCpC5a5EjgDuLSZQO5bOBlA\nf38hSdJgWpsQquonSc4APgfsBVxSVTcmOb15/ENVdVWSk5PcDDwEvLmt8UiSljcRB6ZJkto31qeu\n6OXANvUuya1Jrk1ydZJvjno8kybJR5LsSHJd130/m+QLSb6b5PNJnjXKMU6SJd7PzUnuaD6jVyfZ\nOMoxTookhyb5UpLrk/xdkt9u7u/r8zm2E0IvB7apbwXMVdWGqjpu1IOZQFvofB67/VvgC1V1FPDF\n5rZ6s9j7WcAfNp/RDVX12RGMaxI9Ary9qo4Bjgf+TfP7sq/P59hOCPR2YJv65wb6AVXVV4F7F9z9\n2MGVzZ+/vKaDmmBLvJ/gZ7RvVfXDqrqmuf4gcCOd47z6+nyO84TQy4Ft6k8Bf5nkW0neMurBTIkD\nu/aM2wF4pP3qndmc2+wSV8H1r9mzcwPwDfr8fI7zhODW7uE7oao2ACfRScqXjXpA06Q5Ja+f29W5\nGDgceAlwF/AfRzucyZLk6cDlwFur6oHux3r5fI7zhPAD4NCu24fSqQQNqKruav7838Cf0Vktp9XZ\nkeQfACQ5CLh7xOOZaFV1dzWA/4qf0Z4l2YfOZPDxqrqiubuvz+c4TwiPHdiWZF86B7ZdOeIxTawk\n+yV5RnP9acArgOuW/yn14ErgtOb6acAVyyyrFTS/tHb7FfyM9iRJgEuAG6rqgq6H+vp8jvVxCElO\nAi5gz4FtfzDiIU2sJIfTqQLoHJD4J76f/UmyFTgRWEdnfex7gD8HPgk8F7gVeF1V3TeqMU6SRd7P\nc4E5OquLCrgFOH2xsxfo8ZL8AvAV4Fr2rBY6B/gmfXw+x3pCkCStnXFeZSRJWkNOCJIkwAlBktRw\nQpAkAU4IkqSGE4IkCXBC0BRJ8ldJXrHgvrcl+c/N9aOSXNWcCnh7ksuSHJBkLsn9XadcvjrJyxd5\n/s8keWaL4/9okl/rGvdT23otaTFtfoWmtNa2AqcAn++67/XAO5I8BfgM8Laq+gxAkhOB59A5kOcr\nVfVPl3vyqnpVK6Puegn2HFT0VuDjwMMtv6b0GAtB0+Ry4FVJ9obHzvp4cFX9NfAG4Gu7JwOAqvpy\nVV1Pj6dbbr5g6Geb06ncmOTDzZeRfK6ZcLqX3T/JrV23n5bktiR7JXlJkq83Z/TctuCMnklyJnAw\n8KUkX0zypKYermu+4OhtA7070gqcEDQ1quoeOofqn9zcdQpwWXP9GGD7Mj/+sgWrjA5f7CW6rh8B\nXFRVPwfcB/zagrHcD1yTZK6569XAZ6vqp8AfA++oqhfTOVfPuY//0foj4E46X2b0S3ROZXxwVb2w\nql5E54tlpKFzQtC02b3aCDqri7Z2PbZcCXy161u6NlTVLSu8zi1VdW1zfTtw2CLLXNaMgWZMlyXZ\nH9i/+XIY6HxpyS+u8FrfB56X5MIkrwT+zwrLSwNxQtC0uRL4pSQbgP2q6urm/uuBY4f4Oj/uuv5T\nFt8e92lgY5KfAf4h8FeLLLPi6qrmZGQvAuaBf0XntNDS0DkhaKo0Xx/4JTqrVT7R9dAngJcm2b06\niSS/mOSYlsfyt8CFwKeb0/zfD9zbnJ0S4J/T+UW/0APAM5txPhvYu6q2Ae+mM7lIQ+deRppGW4Ft\nwOt231FV/zfJq4ELklxA50vJvwO8jc7pl1+W5Oqu5ziv+QXcrZa4vtjt3S6jc/rhua77TgM+mGQ/\nOquD3rzIz30Y+GySHwBvB7Yk2f0fuGW/KF0alKe/liQBrjKSJDWcECRJgBOCJKnhhCBJApwQJEkN\nJwRJEuCEIElqOCFIkgD4/2yFPh7tHE6jAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7f863864ffd0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "AC load line shown in figure\n"
     ]
    }
   ],
   "source": [
    "from numpy import arange\n",
    "%matplotlib inline\n",
    "from matplotlib import pyplot as plt\n",
    "# given data\n",
    "V_CC= 40.0##  V\n",
    "V_CEQ= 20.0##  V\n",
    "R_L= 10.0##  Ω\n",
    "I_Csat= V_CEQ/R_L##  A\n",
    "V_CEcutoff= V_CEQ##  V\n",
    "V_CE= arange(0,0.1+V_CEcutoff,0.1) #  V\n",
    "I_C= (V_CEQ-V_CE)/R_L##  A\n",
    "# The plot of ac load line,\n",
    "plt.plot(V_CE,I_C)\n",
    "plt.xlabel(\"VCE in volts\")\n",
    "plt.ylabel(\"IC in A\")\n",
    "plt.title(\"AC load line\")\n",
    "plt.show()\n",
    "print \"AC load line shown in figure\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 10.4 Page No 427"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The value of P_DQ = 0.39 W\n",
      "The value of P_Lmax = 20.00 W\n",
      "The value of P_Dmax = 4.00 W\n"
     ]
    }
   ],
   "source": [
    "# given data\n",
    "V_CC= 40##  V\n",
    "V_BE= 0.7##  V\n",
    "R= 1*10**3##  Ω\n",
    "R_L= 10##  Ω\n",
    "V_CEQ= 20##  V\n",
    "I_CQ= (V_CC-2*V_BE)/(2*R)##  A\n",
    "# The value of P_DQ\n",
    "P_DQ= V_CEQ*I_CQ##  W\n",
    "print \"The value of P_DQ = %.2f W\"%P_DQ\n",
    "PP= 2*V_CEQ##  V\n",
    "# The value of P_Lmax\n",
    "P_Lmax= PP**2/(8*R_L)##  W\n",
    "# The value of P_Dmax\n",
    "P_Dmax= PP**2/(40*R_L)##  W\n",
    "print \"The value of P_Lmax = %.2f W\"%P_Lmax\n",
    "print \"The value of P_Dmax = %.2f W\"%P_Dmax"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 10.5 Page No 428"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The voltage gain of the driver stage = 9.36\n",
      "On ignoring the value of Zin and r'e, the voltage gain = 10.00\n"
     ]
    }
   ],
   "source": [
    "# given data\n",
    "V_E= 1.43##  V\n",
    "R_E= 100##  Ω\n",
    "R_L= 100##  Ω\n",
    "R_C= 1*10**3##  Ω\n",
    "bita= 200#\n",
    "Vt= 25*10**-3##  V\n",
    "I_E= V_E/R_E##  A\n",
    "I_CQ= I_E##  A\n",
    "Zin= bita*R_L##  Ω\n",
    "r_desh_e= Vt/I_CQ##  Ω\n",
    "# The voltage gain of the driver stage \n",
    "A= (R_C*Zin/(R_C+Zin))/(R_E+r_desh_e)#\n",
    "print \"The voltage gain of the driver stage = %.2f\"%A\n",
    "# On ignoring Zin and r_desh_e,\n",
    "A= R_C/R_E#\n",
    "print \"On ignoring the value of Zin and r'e, the voltage gain = %.2f\"%A"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 10.6 Page No 429"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The value of PP = 30.00 volts\n",
      "The value of P_Lmax = 1.12 W\n"
     ]
    }
   ],
   "source": [
    "# given data\n",
    "V_CC= 30.0##  V\n",
    "PP= V_CC##  V\n",
    "R_L= 100.0##  Ω\n",
    "# The value of P_Lmax \n",
    "P_Lmax= PP**2/(8*R_L)##  W\n",
    "print \"The value of PP = %.2f volts\"%PP\n",
    "print \"The value of P_Lmax = %.2f W\"%P_Lmax"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 10.7 Page No 430"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The overall voltage gain = 2000.00\n"
     ]
    }
   ],
   "source": [
    "# given data\n",
    "R_C= 1*10**3##  Ω\n",
    "r_desh_e= 2.5##in Ω\n",
    "Zin= 1.0*10**3##  Ω\n",
    "A2= 10## unit less\n",
    "A3= 1## unit less\n",
    "A1= (R_C*Zin/(R_C+Zin))/r_desh_e## unit less\n",
    "# The overall voltage gain \n",
    "A= A1*A2*A3#\n",
    "print \"The overall voltage gain = %.2f\"%A"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 10.8 Page No 431"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The minimum base current that produces saturation = 108.89 mA\n"
     ]
    }
   ],
   "source": [
    "# given data\n",
    "V_CC= 50.0##  V\n",
    "V_CEsat= 1.0##  V\n",
    "R_L= 5##  Ω\n",
    "bita_dc= 90## unit less\n",
    "I_Csat= (V_CC-V_CEsat)/R_L##  A\n",
    "# The minimum base current that produces saturation \n",
    "I_Bsat= I_Csat/bita_dc##  A\n",
    "I_Bsat= I_Bsat*10**3##  mA\n",
    "print \"The minimum base current that produces saturation = %.2f mA\"%I_Bsat"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 10.9 Page No 432"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The input voltage = 2.85 volts\n"
     ]
    }
   ],
   "source": [
    "# given data\n",
    "I_Csat= 109*10**-3##  A\n",
    "bita_dc= 200#\n",
    "R_B= 1*10**3##  Ω\n",
    "V_BE1= 0.7##  V\n",
    "V_BE2= 1.6##  V\n",
    "# The base current,\n",
    "I_Bsat= I_Csat/bita_dc##  A\n",
    "# The input voltage\n",
    "Vin= I_Bsat*R_B+V_BE1+V_BE2##  V\n",
    "print \"The input voltage = %.2f volts\"%Vin"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}