1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
{
"metadata": {
"name": "",
"signature": "sha256:ca4b0079bde9d44d795cfee22e676408883fa63b320ce21fd0ba8c51e96fec7f"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter2 - Press Tool Design"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.1 - page 95"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from numpy import pi\n",
"D = 50 # Diameter of washer in mm\n",
"t = 4 # thickness of material in mm\n",
"d = 24 # diameter of hole in mm\n",
"p = 360 # shear strength of material in N/mm**2\n",
"F1 = pi*D*t*p # blanking pressure in N\n",
"F2 = pi*d*t*p # piercing pressure in N\n",
"F = F1 + F2 # total pressure in N\n",
"d1 = d + 0.4 # piercing die diameter in mm\n",
"d2 = D - 0.4 # blank punch diameter in mm\n",
"c = 0.8*F # press capacity in N\n",
"print \"Blanking pressure = %d kN\\nPiercing pressure = %0.3f KN\\nTotal pressure required = %0.1f KN\\n\" %(F1/1000,F2/1000,F/1000)\n",
"print \"Piercing punch diameter = %0.2f cm\\nBlanking punch diametre = %0.2f cm \\npress capacity = %0.2f kN\\n\"%(d1/10 , d2/10 , c/1000)\n",
"# Answers vary due to round off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Blanking pressure = 226 kN\n",
"Piercing pressure = 108.573 KN\n",
"Total pressure required = 334.8 KN\n",
"\n",
"Piercing punch diameter = 2.44 cm\n",
"Blanking punch diametre = 4.96 cm \n",
"press capacity = 267.81 kN\n",
"\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.2 - page 101"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"l1 = 76 - ( 2.3 + 0.90) # length1 in mm\n",
"l2 = 115 - (2.3 + 0.90) # length2 in mm\n",
"t = 2.3 # mm\n",
"r = 0.90 # inner radius in mm\n",
"k = t/3 # mm\n",
"B = 0.5*pi*(r + k) # bending allowance in mm\n",
"d = l1 + l2 + B # developed length in mm\n",
"print \"Developed length = %0.2f mm\" %(d)\n",
"# Answers vary due to round off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Developed length = 187.22 mm\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.3 - page 102"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import floor\n",
"t = 3.2 # thickness of blank in mm\n",
"l = 900 # bending length in mm\n",
"sigma = 400 # ultimate tensile strength in N/mm**2\n",
"k = 0.67 # die opening factor\n",
"r1 = 9.5 # punch radius in mm\n",
"r2 = 9.5 # die edge radius in mm\n",
"c = 3.2 # clearance in mm\n",
"w = r1 + r2 + c # width between contact points batween die and punch in mm\n",
"F= (k*l*sigma*t**2)/w # bending force in N\n",
"F=floor(F/10)*10 # N\n",
"print \"bending force = %0.2f kN\" %(F/1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"bending force = 111.25 kN\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.4 - page 102"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"k = 1.33 # die opening factor\n",
"l = 1200 # bend length in mm\n",
"sigma = 455 # ultimate tensile strength in N/mm**2\n",
"t = 1.6 # blank thickness in mm\n",
"w = 8*t # width of die opening in mm\n",
"F = k*l*sigma*t**2/w # bending force in N \n",
"print \"bending force = %0.2f kN\"%(F/1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"bending force = 145.24 kN\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.5 - page 103"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"c = 1.25 # clearance in mm\n",
"r1 = 3 # die radius in mm\n",
"r2 = 1.5 # punch radius in mm\n",
"sigma = 315 # ultimate tensile strength in MPa\n",
"t = 1 # thickness in mm\n",
"l = 50 # width at bend in mm\n",
"w = r1 + r2 +c # width between contact points on die and punch in mm\n",
"F = 0.67*l*sigma*t**2/w # bending force in N\n",
"F_p = 0.67*sigma*l*t # pad force in N\n",
"sigma_c = 560 # setting pressure in MPa\n",
"b1 = 2 # beads on punch\n",
"b = b1*r1 # mm\n",
"F_b = sigma_c*l*b # bottoming force in N\n",
"F_o = F_p + F_b # Force required when bottoming is used in N\n",
"F_n = F +F_p # Force required when bottoming is not used in N\n",
"print \" Force required when bottoming is used = %0.1f tonnes\"%(F_o/(9.81*1000))\n",
"print \" Force required when bottoming is not used = %0.3f tonnes\" %(F_n/(9.81*1000))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Force required when bottoming is used = 18.2 tonnes\n",
" Force required when bottoming is not used = 1.263 tonnes\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.6 - page 103"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sin\n",
"w = 2 # width in mm\n",
"t = 5 # thickness in mm\n",
"theta=6 # shear in degrees\n",
"tau = 382.5 # ultimate shear stress in MPa\n",
"F = w*t*tau*1000 # cutting force in N\n",
"l = t/sin(theta*pi/180) # length to be cut in mm\n",
"F_i = l*t*tau # cutting force in N\n",
"print \" cutting force with parallel cutting edges = %0.3f MN\\n cutting force when shear is considered = %0.2f kN \"%(F/10**6 ,F_i/1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" cutting force with parallel cutting edges = 3.825 MN\n",
" cutting force when shear is considered = 91.48 kN \n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.7 - page 104"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sqrt\n",
"d1 = 105 # inside diameter in mm\n",
"h = 90 # depth in mm\n",
"t = 1 # thickness in mm\n",
"D = sqrt(d1**2+4*d1*h) # blank diameter in mm\n",
"tr = t*100/D # thickness ratio\n",
"# from table safe drawing ratio is 1.82\n",
"r = 1.82 # draw ratio\n",
"d2 = D/r # diameter for first draw in mm\n",
"d = 130 # Let diameter for first draw in mm\n",
"ratio1 = D/d # D/d for first draw \n",
"ratio2 = d/d1 # D/d for second draw\n",
"h1 =((D)**2-(d)**2)/(4*d) # Depth of first draw in mm\n",
"sigma = 415 # N/mm**2\n",
"c = 0.65 # constant\n",
"pc = pi*d*t*sigma*(D/d - c) # press capacity in kN\n",
"print \" Blank diameter = %d mm \\n Thickness ratio = %0.3f \\n Diameter for first draw = %d mm \\n Depth of first draw = %0.2f mm \\n Press capacity = %0.2f kN\"%(D,tr,d2,h1,pc/1000)\n",
"# Answers vary due to round off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Blank diameter = 220 mm \n",
" Thickness ratio = 0.453 \n",
" Diameter for first draw = 121 mm \n",
" Depth of first draw = 61.39 mm \n",
" Press capacity = 177.92 kN\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2.8 - page 105"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"d = 80 # diameter in mm\n",
"h = 250 # height in mm\n",
"D = sqrt((d**2+4*d*h))/10 # blank diameter in cm\n",
"D1 = 0.5*D # diameter after first draw in cm\n",
"# let reduction be 40% in second draw\n",
"D2 = D1-0.4*D1 # diameter after scond draw in cm\n",
"R = (1 - (d/(10*D2)))*100 # percentage reduction for third draw\n",
"l1 = ((D)**2-(D1)**2)/(4*D1) # height of cup after first draw in cm\n",
"l2 = ((D)**2-(D2)**2)/(4*D2) # height of cup after first draw in cm\n",
"l3 = ((D)**2-(d/10)**2)/(4*d/10) # height of cup after first draw in cm\n",
"t = 3 # mm\n",
"sigma = 250 # N/mm**2\n",
"C = 0.66\n",
"F = pi*d/10*t*sigma*((D*10/d)-C) # drawing force in kN\n",
"print \" Diameter after first draw = %0.1f \\n Diameter after second draw = %0.2f \\n Percentage reduction after third draw = %d percent\"%(D1,D2,R)\n",
"print \" Height of cup after first draw = %0.2f cm\\n Height of cup after second draw = %0.2f cm\\n Height of cup after third draw = %0.2f cm\"%(l1,l2,l3)\n",
"print \" Drawing force = %0.3f kN\"%(F/1000)\n",
"# Answers vary due to round off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Diameter after first draw = 14.7 \n",
" Diameter after second draw = 8.82 \n",
" Percentage reduction after third draw = 9 percent\n",
" Height of cup after first draw = 11.02 cm\n",
" Height of cup after second draw = 22.29 cm\n",
" Height of cup after third draw = 25.00 cm\n",
" Drawing force = 56.817 kN\n"
]
}
],
"prompt_number": 28
}
],
"metadata": {}
}
]
}
|