1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 1: Light"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.1, Page Number 10"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Brewsters Angle of the Material is 56.31 Degrees\n"
]
}
],
"source": [
"import math\n",
"\n",
"n2=1.5 #Given Refractive Index of Glass in Air\n",
"n1=1 #Given Refractive Index of Air\n",
"\n",
"theta=0 #Brewster's Angle\n",
"#From Equation 1.13 (Brewsters angle= Tan Inverse (n2/n1))\n",
"theta=math.degrees(math.atan(1.5))\n",
"print \"The Brewsters Angle of the Material is \"+str(round(theta,2))+\" Degrees\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.2, Page Number 13"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"In Coherant Sources The Maximum Irradiance is 16I\n",
"In Incoherant Sources The Maximum Irradiance is 4I\n"
]
}
],
"source": [
"n=4 #Total Number of Sources\n",
"\n",
"#For Coherant Sources\n",
"print \"In Coherant Sources The Maximum Irradiance is \"+str(n*n)+\"I\" #Where I is the Irradiance at any point\n",
"#For Incoherant Sources\n",
"print \"In Incoherant Sources The Maximum Irradiance is \"+str(n)+\"I\" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.3, Page Number 23"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(A)The Minimum Seperation Between the Sources is 0.0025 m\n",
"(B)The Minimum Wavelength Difference which may be resolved is 2.08333333333e-11 m\n"
]
}
],
"source": [
"D=0.1 #Diameter of the Objective Lens\n",
"d1=500 #Distance from the source\n",
"l =0.000000500 #Wavelength Provided\n",
"p=1 #First Order\n",
"N=40*600 #The diffraction grating is 40 mm wide and has 600 lines/mm\n",
"\n",
"#From Equation 1.29 we Have\n",
"Smin=(d1*l)/D #Where Smin is the minimum Seperation of the Sources\n",
"print \"(A)The Minimum Seperation Between the Sources is \"+str(Smin)+\" m\"\n",
"\n",
"#We know that Chromatic resolving power is given by l/dl where dl is the Minimum Wavelength Difference\n",
"#From Equation l/dl=p*N\n",
"dl=l/(N*p)\n",
"\n",
"print \"(B)The Minimum Wavelength Difference which may be resolved is \"+str(dl)+\" m\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example 1.4, Page Number 29"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Total Power Radiated from the Source is 6.3504 W\n"
]
}
],
"source": [
"em=0.7 #Emissivity Of the Surface\n",
"T=2000 #Temperature in Kelvin\n",
"A=0.00001 #Area in Meter Square\n",
"S=5.67*(10**-8) #Stefan-Boltzmann Constant\n",
"\n",
"W=S*A*em*(T**4) #Where W is the total power radiated\n",
"\n",
"print \"The Total Power Radiated from the Source is \"+str(W)+\" W\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example 1.5, Page Number 31"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Ionization Energy required to excite the electron from ground to Infinity 13.66 eV\n"
]
}
],
"source": [
"Z=1 #Atomic Number of Hydrogen\n",
"m=9.1*(10**-31) #Mass of a Electron\n",
"e=1.6*(10**-19) #Charge Of a Electron\n",
"p=6.6*(10**-34) #Plancks Constant\n",
"e1=8.85*(10**-12)#Permittivity of Free Space\n",
"#From Equation 1.43\n",
"E=(m*(Z**2)*(e**4))/(8*(p**2)*(e1**2)) #Where E is the Ionization Energy\n",
"E2=E/e #Converting in Electron Volts\n",
"E2=round(E2,2)\n",
"\n",
"print \"The Ionization Energy required to excite the electron from ground to Infinity \"+str(E2)+\" eV\"\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example 1.6, Page Number 32"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The Required Work function is 4.5375 eV\n"
]
}
],
"source": [
"e=1.6*(10**-19) #Charge Of a Electron\n",
"h=6.6*(10**-34) #Plancks Constant\n",
"vo=1.1*(10**15) #Threshold Frequency in Hertz\n",
"\n",
"# We Know h*vo=phi*e where phi is the required Work Function\n",
"# We assume that the ejected electron has zero kinetic energy\n",
"\n",
"phi=h*vo/e\n",
"print \"The Required Work function is \"+str(phi)+\" eV\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|