summaryrefslogtreecommitdiff
path: root/sample_notebooks/ArchanaDharmasagar Kalidas/chapter3.ipynb
blob: 0ace7f2d37619dc12b7e7aa9a196e54699966454 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
{
 "metadata": {
  "name": "",
  "signature": "sha256:c2cfd770b64ff6a5a34b3865d707320d0a14506274eb94013c7282c3c39c74ee"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "3 : Mechanics of rigid body"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 1, Page number A 3.32"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "t = 20     # tow is given in N-m\n",
      "k = 0.5    # radius of gyration is given in meters\n",
      "m = 10     # mass is given in Kgs\n",
      "# alpha = ?  alpha is angular acceleration\n",
      "#alpha = tow / (((gyration)**2) * mass)\n",
      "\n",
      "#calculation\n",
      "alpha = t / ((k**2) * m)\n",
      "\n",
      "#result\n",
      "print \"the angular acceleration is\", alpha ,\"rad /(sec**2)\"\n",
      "print \"answer given in the book is wrong\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the angular acceleration is 8.0 rad /(sec**2)\n",
        "answer given in the book is wrong\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 2, Page number A 3.32"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "pi = 22/7\n",
      "m = 6 * 10**24     # mass is given in kgs\n",
      "r = 6.4 * 10**6    # radius is given in meters \n",
      "r1 = 1.5 * 10**11  # orbital radius in meters\n",
      "t = 24*60*60       # number of seconds in a day\n",
      "T = 365*24*60*60   # number of seconds in a year\n",
      "\n",
      "I = (2/5) * m * r**2   # inertia in kg-m**2\n",
      "I1 =  m * r1**2        # inertia in kg-m**2\n",
      "omega = (2* pi) / t    # angular velocity in rad / sec\n",
      "omega1 = (2* pi) / T\n",
      "\n",
      "#calculation\n",
      "L = I * omega          # spin angular momentum (Kg -m**2) / sec\n",
      "L1 = I1 * omega1       # Orbital angular momentum ((Kg -m**2) / sec)\n",
      "\n",
      "#Result\n",
      "print \"the spin angular momentum is \", round(L/10**33,3), \"*10**33 Kg m**2 / sec\"\n",
      "print \"answer varies due to rounding off errors\"\n",
      "print \"the spin angular momentum is \", round(L1/10**40,2), \"*10**40 Kg m**2 / sec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the spin angular momentum is  7.152 *10**33 Kg m**2 / sec\n",
        "answer varies due to rounding off errors\n",
        "the spin angular momentum is  2.69 *10**40 Kg m**2 / sec\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 4, Page number A 3.33"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "m = 0.1     # mass is converted into kgs from grams\n",
      "d = 0.01    # diameter is given in meters\n",
      "r = d/2     # radius is half of diameter\n",
      "v = 0.05    # velocity is given in m / s\n",
      "\n",
      "I = (2/5) * m *r**2   # inertia is given in Kg - m**2\n",
      "omega = v/r           # angular velocity is given in rad/sec\n",
      "\n",
      "#calculation\n",
      "KE = (1/2)* I * omega**2    # kinetic energy is given in joules\n",
      "\n",
      "#Result\n",
      "print \"the kinetic energy of the sphere is\", round(KE*10**5), \"*10**-5 j\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the kinetic energy of the sphere is 5.0 *10**-5 j\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 5, Page number A 3.34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "d = .02            # diameter is converted to meters from centimeters\n",
      "r = d/2            # radius is half of diameter\n",
      "I = 2 * 10**(-6)   # inertia is given in kg - mtr**2\n",
      "v = .05            # velocity is converted into mtrs/sec from cms / sec\n",
      "omega =  v/r       # omega is angular velocity in rad / sec\n",
      "\n",
      "#calculation\n",
      "KE = (1/2) * I * omega**2 # kinetic energy is calculated in joules\n",
      "\n",
      "#Result \n",
      "print \"the kinetic energy calculated is\" ,KE*10**6, \"*10**-6 j\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the kinetic energy calculated is 25.0 *10**-6 j\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 6, Page number A 3.34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "m = 100           # mass is given in Kgs\n",
      "r = 1             # radius is given in meters\n",
      "n = 120           # number of rotations is equall to 120 rotations per minute\n",
      "pi = 3.14\n",
      "t = 60            # time t is given in seconds as the rotations are given according to minute\n",
      "\n",
      "#calculation\n",
      "I = (1/2) * m * r**2   # inertia is calculated in Kg - mtr**2\n",
      "omega  = (2*pi*n)/t    # omega is angular velocity\n",
      "\n",
      "KE = (1/2) * I * omega**2 # kinetic energy is calculated in joules\n",
      "\n",
      "#Result\n",
      "print \"the kinetic energy is \", round(KE), \"j\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the kinetic energy is  3944.0 j\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 8, Page number A 3.35"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "f = 40    # frequency is given in revolutions per sec\n",
      "b = 0.1   # base is given in cetimeters which is converted into meters\n",
      "# inertia (I) is given as (3/10)* m * r**2\n",
      "\n",
      "# omega = (m*g*r)/L\n",
      "\n",
      "#Calculation\n",
      "omega = (10*9.8*20*10**(-2))/(4*25*10**(-4) * 6.28 * 40)  # angular velocity is cal in rad /sec\n",
      "\n",
      "#reuslt\n",
      "print \"the angular velocity\", round(omega,4), \"rad/sec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the angular velocity 7.8025 rad/sec\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 9, Page number A 3.36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "m = 1.5       # mass is given in Kgs\n",
      "k = 0.3       # radius of gyration is given in mtrs\n",
      "n = 240       # number of revolutions per miute\n",
      "t = 60        # time is taken in seconds as the revolutioni is given per minute\n",
      "L = 0.1       # pivoted point length is given in meters\n",
      "g = 9.8       # gravitational constant is 9.8 mtrs/sec**2\n",
      "\n",
      "#calculation\n",
      "omega = (2*pi*n) / t   # omega is calculated in rad /sec\n",
      "\n",
      "omegap = (g * L) / (k**2 *omega)\n",
      "\n",
      "#result\n",
      "print \"the precessional speed of the wheel is\", round(omegap,2), \"red / sec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the precessional speed of the wheel is 0.43 red / sec\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 10, Page number A 3.36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "m = 1    # mass is given in kgs\n",
      "r = 0.1  # radius is given in meters\n",
      "omega = 20 * 3.14    # omega(angular velocity) is given in rad/ sec\n",
      "I = (1/2)*m*r**2  # inertia is calcuated in kg - m**2\n",
      "\n",
      "#calculation\n",
      "\n",
      "L= I* omega    #L agular momentum is calculated in m**2 / sec\n",
      "KE = (1/2) * I * (omega**2)  # kineticc energy is calculated in joules\n",
      "\n",
      "#result\n",
      "print \"the angular momentum is\", L, \"m**2 / sec\"\n",
      "print \"the kinetic energy is\", KE, \"j\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the angular momentum is 0.314 m**2 / sec\n",
        "the kinetic energy is 9.8596 j\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 12, Page number A 3.38"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "m = 0.2    # mass is given in kgs\n",
      "r = 0.5    # radius is given in meters\n",
      "a = 0.2    # rate of change of velocity is acceleration which ig given in mtr / sec**2\n",
      "\n",
      "# calculation\n",
      "\n",
      "# tow is rate of change of angular momentum\n",
      "# L = m* v * r\n",
      "# by differentiating L we have to differentiate v that is velocity which gives us acceleration a \n",
      "\n",
      "t = m * r * a  # tow is calculated in N/m\n",
      "\n",
      "#Result\n",
      "print \"the torque acting is\",t , \"N - m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the torque acting is 0.02 N - m\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 13, Page number A 3.38"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "m = 2                   # mass is given in kgs\n",
      "r = 0.5                 # radius is given in meters\n",
      "v = 24*1000/(60*60)     # velocity is given in Km / hr which is cinverted into mtrs / sec\n",
      "t = 0.1                 # time is given in sec\n",
      "omega = v/r             # angular velocity is calc in rad/sec\n",
      "theta = 1               # angular change\n",
      "\n",
      "# calculation\n",
      "L = m * r**2 * omega    # angular momentum Kg -m**2/sec\n",
      "#t = d/dt(L)\n",
      "t= L * theta/t          # torque in N -m\n",
      "\n",
      "#result\n",
      "print \"the angular momentum\",round(L,3),\"in KG - m**2/sec\"\n",
      "print \"the torque required is\",round(t,2),\"N - m\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the angular momentum 6.667 in KG - m**2/sec\n",
        "the torque required is 66.67 N - m\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14, Page number A 3.38"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "KE = 80             # kinetic energy is calculated in joules\n",
      "I = 8 * 10 **(-7)   # inertia is given in kg-m**2\n",
      "\n",
      "# calculation\n",
      "L = (2* I * KE)**(0.5) # the angular momentum is given in Kg -m**2/sec\n",
      "\n",
      "# result\n",
      "print \"the angular momentum is\", round(L*10**2,2) , \"*10**-2 Kg - m**2/sec\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the angular momentum is 1.13 *10**-2 Kg - m**2/sec\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 15, Page number A 3.39\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#import modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#given data\n",
      "n = 30         # numb of revolution is given in rev / sec\n",
      "t = 1          # time t is in seconds\n",
      "theta = 30     # angle theta is 30 degrees\n",
      "m = 0.5        # mass is given in Kgs \n",
      "I = 5 * 10**-4 # rotational inertia is given in Kg -m**2\n",
      "l = 0.04       # length pivoted from the center of mass is given in cms which is converted into meters\n",
      "pi= 3.14\n",
      "g = 9.8        # gravitational const is given in m/sec**2\n",
      "\n",
      "#calculation\n",
      "omega = (2*pi*n)/t                # angular velocity is calculated in rad/ sec\n",
      "omegap = (m*g*l)/(I* omega)       # angular velocity of precession is calculated in rad/ sec\n",
      "\n",
      "#Result\n",
      "print \"the angular velocity of precession is\",round(omegap,2),\"rad/sec\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the angular velocity of precession is 2.08 rad/sec\n"
       ]
      }
     ],
     "prompt_number": 24
    }
   ],
   "metadata": {}
  }
 ]
}