1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
{
"metadata": {
"name": "",
"signature": "sha256:06bc45481e0c8d1fd696ec9d96ac784607ece32d90669bf112f17cc78a27982d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 15 : IRRIGATION CHANNEL 2 DESIGN PROCEDURE"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.1 pg : 739"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#design the distributory umath.sing Laecey theory\n",
"\t\t\t\t\n",
"#Given\n",
"f = 0.85; \t\t\t\t#silt factor\n",
"AR = 3600.; \t\t\t\t#area for rabi\n",
"AK = 1400.; \t\t\t\t#area for kharif\n",
"delta_r = 0.135; \t\t\t\t#kor depth for rabi\n",
"delta_k = 0.19; \t\t\t\t#kor depth for kharif\n",
"tr = 4.; \t\t\t\t#kor period for rabi\n",
"tk = 2.5; \t\t\t\t#kor period for kharif\n",
"\n",
"# Calculations\n",
"Du_r = 8.64*tr*7/delta_r; \t\t\t\t#duty for rabi\n",
"Du_k = 8.64*tk*7/delta_k; \t\t\t\t#duty for kharif\n",
"q_r = AR/Du_r; \t\t\t\t#discharge for rabi\n",
"q_k = AK/Du_k; \t\t\t\t#discharge for kharif\n",
"Q = q_r; \t\t\t\t#math.since q_r>q_k\n",
"V = (Q*f**2/144)**(1./6);\n",
"A = Q/V;\n",
"P = 4.75*(Q)**0.5;\n",
"D = (P-(P**2-6.944*A)**0.5)/3.472;\n",
"S = f**(5./3)/(3340*Q**(1./6));\n",
"P = round(P*100)/100;\n",
"D = round(D*100)/100;\n",
"\n",
"# Results\n",
"print \"Bed slope = %.2e.\"%(S);\n",
"print \"Perimeter of channel section = %.2f m.\"%(P);\n",
"print \"Depth of channel section = %.2f m.\"%(D);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Bed slope = 2.03e-04.\n",
"Perimeter of channel section = 6.73 m.\n",
"Depth of channel section = 0.81 m.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.2 pg : 740"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"#design an irrigation channel in alluvial soil by Laecy's theory\n",
"\t\t\t\t\n",
"#Given\n",
"Q = 15.; \t\t\t\t#Full supply discharge\n",
"f = 1.; \t\t\t\t#silt factor\n",
"s = 1./2; \t\t\t\t#side slope of channel\n",
"\n",
"\n",
"# Calculations\n",
"#from Laecey regime channel (Fig.15.4(b)) B and D is obtained as;\n",
"B = 15.1;\n",
"D = 1.38;\n",
"\t\t\t\t#also from Fig.15.5 we get slope as\n",
"S = 0.19/1000;\n",
"\n",
"# Results\n",
"print \"Width of channel section = %.2f m.\"%(B);\n",
"print \"Depth of channel section = %.2f m.\"%(D);\n",
"print \"Bed slope = %.2e.\"%(S);\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Width of channel section = 15.10 m.\n",
"Depth of channel section = 1.38 m.\n",
"Bed slope = 1.90e-04.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.3 pg : 740"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy import array,zeros,linspace,float64\n",
"\n",
"#design and prepare the longitudnal section;schedule of area statistics and channel dimension of irrigation channel\n",
"\t\t\t\t\n",
"#Given\n",
"dl = 157.7; \t\t\t\t#datum level\n",
"fsl = 157.; \t\t\t\t#full supply level of parent channel\n",
"bl = 156.; \t\t\t\t#bed level of parent channel\n",
"kor_r = 4.; \t\t\t\t#kor period of rabi\n",
"kor_k = 2.5; \t\t\t\t#kor period of kharif\n",
"kord_r = 13.4; \t\t\t\t#kor depth of rabi\n",
"kord_k = 19.; \t\t\t\t#kor depth of kharif\n",
"s = 0.5; \t\t\t\t#side slope\n",
"m = 1.; \t\t\t\t#critical velocity ratio\n",
"N = 0.0225; \t\t\t\t#Kutter n\n",
"qo_r = 8.64*7*kor_r*100/kord_r; \t\t\t\t#outlet discharge for rabi(calculation is wrong in book)\n",
"qo_k = 8.64*7*kor_k*100/kord_k; \t\t\t\t#outlet discharge for kharif(calculation is wrong in book)\n",
"ca = 16000.; \t\t\t\t#culturable commanded area\n",
"Ir = 0.3; \t\t\t\t#intensity of irrigation in rabi\n",
"Ik = 0.125; \t\t\t\t#intensity of irrigation in rabi\n",
"\n",
"# Calculations and Results\n",
"Ar = Ir*ca; \t\t\t\t#area under rabi\n",
"Ak = ca*Ik; \t\t\t\t#area under kharif\n",
"q_r = Ar/qo_r;\n",
"q_k = Ak/qo_k;\n",
"q_r = round(q_r*100)/100;\n",
"q_k = round(q_k*100)/100;\n",
"print \"discharge neede for rabi crop = %.2f cumecs.\"%(q_r);\n",
"print \"discharge neede for kharif crop = %.2f cumecs.\"%(q_k);\n",
"print \"outlet discharge factor adopted = %i hectares per cumecs.\"%(qo_r);\n",
"\t\t\t\t#at km 5\n",
"ca = 8000; \t\t\t\t#culturable area\n",
"Ar = Ir*ca; \t\t\t\t#area under rabi\n",
"q_r = Ar/qo_r;\n",
"l = 0.5 \t\t\t\t#total loss after 5 km\n",
"q = q_r+l; \t\t\t\t#total discharge\n",
"dq = 1.1*q; \t\t\t\t#desigm discharge\n",
"S = 1./4000; \t\t\t\t#slope\n",
"B = array([5.5, 4.9, 4.55]); \t\t\t\t#Bed width\n",
"D = array([0.73, 0.79, 0.84]); \t\t\t\t#water depth\n",
"Vo = array([0.448, 0.472, 0.488]); \t\t\t\t#critical velocity\n",
"A = zeros(3)\n",
"V = zeros(3)\n",
"m = zeros(3)\n",
"print \"Bed width water depth area velocity critical velocity C.V.R\";\n",
"for i in range(3):\n",
" A[i] = B[i]*D[i]+D[i]**2/2;\n",
" V[i] = dq/A[i];\n",
" m[i] = V[i]/Vo[i];\n",
" A[i] = round(A[i]*100)/100;\n",
" V[i] = round(V[i]*1000)/1000;\n",
" m[i] = round(m[i]*100)/100;\n",
" print \"%.2f %.2f %.2f %.2f %.2f %.2f\"%(B[i],D[i],A[i],V[i],Vo[i],m[i]);\n",
"\n",
"B = 4.55;\n",
"D = 0.84;\n",
"print \"hence take B = %.2f .; D = %.2f m.\"%(B,D);\n",
"\t\t\t\t#at km 4\n",
"q = round(q*100)/100;\n",
"print \"discharge at 5 km = %.2f cumecs.\"%(q);\n",
"ca = 10000; \t\t\t\t#culturable area\n",
"Ar = Ir*ca; \t\t\t\t#area under rabi\n",
"q_r = Ar/qo_r;\n",
"l = 0.5 \t\t\t\t#total loss below 5 km\n",
"P = B+D*5**0.5; \t\t\t\t#wetted perimeter\n",
"l1 = P*1000*2/1000000; \t\t\t\t#loss between 5 km and 4km\n",
"l2 = l1+l;\n",
"q = q_r+l2;\n",
"dq = 1.1*q;\n",
"q = round(q*1000)/1000;\n",
"print \"discharge at 4 km = %.2f cumecs\"%(q);\n",
"print \"other discharge are calculated and are tabulated as:\";\n",
"x = linspace(1,5,6)\n",
"A1 = array([4800, 4200, 3600, 3300, 3000, 2400],dtype=float64);\n",
"A2 = array([2000, 1750, 1500, 1375, 1250, 1000],dtype=float64);\n",
"S = array([22.5, 22.5, 22.5, 24, 24, 25]);\n",
"B = array([5.5, 5.2, 4.85, 4.7, 4.55, 4.55]);\n",
"D = array([1.04, 1.007, 0.975, 0.945, 0.915, 0.840]);\n",
"dq = array([3.56, 3.17, 2.8, 2.6, 2.4, 2.02]);\n",
"V = array([0.570, 0.555, 0.538, 0.530, 0.521, 0.484]);\n",
"m = array([1.015, 1, 1, 1, 1, 0.992]);\n",
"print \"Below km area to irrigate rabi area to irrigate kharif bed slope bed width water depth design discharge velocity C.V.R\";\n",
"for i in range(6):\n",
" print \"%8i %i %i %.2f %.2f %.2f\\\n",
" %.2f %.2f %.2f\"%(x[i],A1[i],A2[i],S[i],B[i],D[i],dq[i],V[i],m[i]);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"discharge neede for rabi crop = 2.66 cumecs.\n",
"discharge neede for kharif crop = 2.51 cumecs.\n",
"outlet discharge factor adopted = 1805 hectares per cumecs.\n",
"Bed width water depth area velocity critical velocity C.V.R\n",
"5.50 0.73 4.28 0.47 0.45 1.05\n",
"4.90 0.79 4.18 0.48 0.47 1.02\n",
"4.55 0.84 4.17 0.48 0.49 0.99\n",
"hence take B = 4.55 .; D = 0.84 m.\n",
"discharge at 5 km = 1.83 cumecs.\n",
"discharge at 4 km = 2.17 cumecs\n",
"other discharge are calculated and are tabulated as:\n",
"Below km area to irrigate rabi area to irrigate kharif bed slope bed width water depth design discharge velocity C.V.R\n",
" 1 4800 2000 22.50 5.50 1.04 3.56 0.57 1.01\n",
" 1 4200 1750 22.50 5.20 1.01 3.17 0.56 1.00\n",
" 2 3600 1500 22.50 4.85 0.97 2.80 0.54 1.00\n",
" 3 3300 1375 24.00 4.70 0.94 2.60 0.53 1.00\n",
" 4 3000 1250 24.00 4.55 0.92 2.40 0.52 1.00\n",
" 5 2400 1000 25.00 4.55 0.84 2.02 0.48 0.99\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.4 pg : 744"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy import roots\n",
"\n",
"#Given\n",
"B = 5.; \t\t\t\t#bed width\n",
"t = 2.; \t\t\t\t#top width of banks\n",
"h = 2.92; \t\t\t\t#heigth of banks from bed\n",
"n = 1.5;\n",
"\n",
"#sectional area of digging = sectional area of two banks\n",
"#By+zy**2 = 2(h-y)+2n(h-y)**2\n",
"#substituting the values and on simplificatio we get\n",
"s = [1,-13.26,18.59]\n",
"y = roots(s)[1];\n",
"#from this we get y = 11.666556 and 1.5934436.\n",
"#taking y = 1.5934436;\n",
"y = round(y*10)/10;\n",
"\n",
"# Results\n",
"print \"economical depth of cutting = %.2f m.\"%(y);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"economical depth of cutting = 1.60 m.\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|