summaryrefslogtreecommitdiff
path: root/sample_notebooks/AnandMandali/ch5.ipynb
blob: 3176c0e5dce5af49507eed77f1b9477d7ec4d354 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
{
 "metadata": {
  "name": "",
  "signature": "sha256:f9430cdf3ccbe0455a5081c4e47c887588ff78214ec8703c5bcd6324cca5d35d"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 5 : Single Phase Transformers"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.1  Page No :  5.5"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "kVA = 250.;\t\t\t\t#kVA\n",
      "V1 = 11000.;\t\t\t\t#V(Primary voltage)\n",
      "V2 = 400.;\t\t\t\t#V(secondary voltage)\n",
      "f = 50.;\t\t\t\t#Hz\n",
      "N2 = 80.;\t\t\t\t#no. of turns in secondary\n",
      "\n",
      "# Calculations and Results\n",
      "Ifl1 = kVA*1000/V1;\t\t\t\t#A(Full load primay current)\n",
      "Ifl2 = kVA*1000/V2;\t\t\t\t#A(Full load secondary current)\n",
      "print (\"Part(a)\");\n",
      "print \"Full load primary current(A) %.2f\"%Ifl1\n",
      "print \"Full load secondary current(A) : %.2f\"%Ifl2\n",
      "\n",
      "print (\"Part(b)\");\n",
      "N1 = N2*V1/V2;\t\t\t\t#no. of turns in secondary\n",
      "print \"No. of turns in primary : %.2f\"%N1\n",
      "print (\"Part(c)\");\n",
      "fi_m = V2/(4.44*N2*f);\t\t\t\t#Wb\n",
      "print \"Maximum value of flux(mWb) : %2.f\"%(fi_m*1000)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Part(a)\n",
        "Full load primary current(A) 22.73\n",
        "Full load secondary current(A) : 625.00\n",
        "Part(b)\n",
        "No. of turns in primary : 2200.00\n",
        "Part(c)\n",
        "Maximum value of flux(mWb) : 23\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.2  Page No :  5.6"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# Variables\n",
      "N1 = 480;\t\t\t\t#no. of turns in primary\n",
      "N2 = 90;\t\t\t\t#no. of turns in secondary\n",
      "lfp = 1.8;\t\t\t\t#m(length of flux path)\n",
      "ag = 0.1;\t\t\t\t#mm(airgap)\n",
      "Flux = 1.1;\t\t\t\t#T(flux density)\n",
      "MF = 400;\t\t\t\t#A/m(Magnetic flux)\n",
      "c_loss = 1.7;\t\t\t\t#W/kg\n",
      "f = 50;\t\t\t\t#Hz\n",
      "d = 7800;\t\t\t\t#kg/m**3(density of core)\n",
      "V = 2200;\t\t\t\t#V(potential difference)\n",
      "\n",
      "# Calculations and Results\n",
      "#Part (a)\n",
      "fi_m = V/(4.44*N1*f);\t\t\t\t#Wb\n",
      "A = fi_m/Flux;\t\t\t\t#m**2(Cross sectional area)\n",
      "print \"(a) Cross sectional area(m**2) : %.2f\"%A\n",
      "#Part (b)\n",
      "Vnl2 = V*N2/N1;\t\t\t\t#V(2ndary voltage on no load)\n",
      "print \"(b) 2ndary voltage on no load(V) : %.f\"%Vnl2\n",
      "\n",
      "#Part (c)\n",
      "Fm1 = MF*lfp;\t\t\t\t#A(Magnetootive force for the core)\n",
      "Fm2 = Flux/(4*math.pi*10**-7)*ag*10**-3;\t\t\t\t#A(Magnetootive force for airgap)\n",
      "Fm = Fm1+Fm2;\t\t\t\t#A(Total magnetomotive force)\n",
      "Imax = Fm/N1;\t\t\t\t#A(maximum value of magnetizing current)\n",
      "Iom = Imax/math.sqrt(2);\t\t\t\t#A(rms current)\n",
      "v = lfp*A;\t\t\t\t#m**3(Volume of core)\n",
      "m = v*d;\t\t\t\t#kg(Mass of core)\n",
      "coreLoss = c_loss*m;\t\t\t\t#W(Core Loss)\n",
      "Io1 = coreLoss/V;\t\t\t\t#A(Core loss component of curent)\n",
      "Io = math.sqrt(Iom**2+Io1**2);\t\t\t\t#A(no load current)\n",
      "print \"(c) Primary current on no load(A) : %.2f\"%Io\n",
      "\n",
      "pf = Io1/Io;\t\t\t\t#lagging pf on no load\n",
      "print \"(c) Power factor(lagging) on no load : %.2f\"%pf\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) Cross sectional area(m**2) : 0.02\n",
        "(b) 2ndary voltage on no load(V) : 412\n",
        "(c) Primary current on no load(A) : 1.21\n",
        "(c) Power factor(lagging) on no load : 0.17\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.3  Page No :  5.8"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "N1 = 1000;\t\t\t\t#no. of turns in primary\n",
      "N2 = 200;\t\t\t\t#no. of turns in secondary\n",
      "I0 = 3;\t\t\t\t#A\n",
      "pf0 = 0.2;\t\t\t\t#lagging power factor\n",
      "I2 = 280;\t\t\t\t#A(2ndary current)\n",
      "pf2 = 0.8;\t\t\t\t#lagging power factor\n",
      "\n",
      "# Calculations and Results\n",
      "I2dash = I2*N2/N1;\t\t\t\t#A\n",
      "cosfi0 = pf0;cosfi2 = pf2;sinfi0 = math.sqrt(1-cosfi0**2);sinfi2 = math.sqrt(1-cosfi2**2);\n",
      "I1_cosfi1 = I2dash*cosfi2+I0*cosfi0;\t\t\t\t#A\n",
      "I1_sinfi1 = I2dash*sinfi2+I0*sinfi0;\t\t\t\t#A\n",
      "I1 = math.sqrt(I1_cosfi1**2+I1_sinfi1**2);\t\t\t\t#A\n",
      "print \"Primary current(A) : %.1f\"%I1\n",
      "\n",
      "fi1 = math.degrees(math.atan(I1_sinfi1/I1_cosfi1));\t\t\t\t#degree\n",
      "pf1 = math.cos(math.radians(fi1));\t\t\t\t#lagging\n",
      "print \"Primary power factor(lagging) : %.2f\"%pf1\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Primary current(A) : 58.3\n",
        "Primary power factor(lagging) : 0.78\n"
       ]
      }
     ],
     "prompt_number": 9
    }
   ],
   "metadata": {}
  }
 ]
}