1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
|
{
"metadata": {
"name": "",
"signature": "sha256:38fdf1a79a5afe4aa8258051a4233e0da43992d64154d50af084fa49764f5132"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter - 3 : Junction Diode and Junction Capacitance"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.1 : Page No - 90"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#Given data\n",
"Co= 20 # in pF\n",
"Vr= 5 # in V\n",
"V_T= 26 # in mV\n",
"V_T= V_T*10**-3 # in V\n",
"C_T= Co/(1+(Vr/V_T)) # in pF\n",
"print \" The transition capacitance of diode = %0.2f pF\" %C_T"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The transition capacitance of diode = 0.10 pF\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.2 : Page No - 91"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"toh= 10**-6 # in sec\n",
"I=10 # in mA\n",
"I=I*10**-3 # in A\n",
"n=1 \n",
"V_T= 26 # in mV\n",
"V_T= V_T*10**-3 # in V\n",
"C_D= toh*I/(n*V_T) # in F\n",
"print \" The diffusion capacitance in p-n junction diode = %0.f nF\" %(C_D*10**9)\n",
"\n",
"# Note: There are two mistake in the book. First one is this that they put the wrong value of I to evaluating\n",
"# the value of C_D because the value of I is given 10mA (i.e. 10*10**-3= 10**-2 amp) but they put 10**-3 at place \n",
"# of 10**-2 and second one is calculation error. So the answer in the book is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The diffusion capacitance in p-n junction diode = 385 nF\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.3 : Page No - 91"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import exp\n",
"#Given data\n",
"T=300 # in K\n",
"V_T= T/11600 # in V\n",
"v= 0.3 # forward bias voltage in volt\n",
"I= 10 # leakage current in micro amp\n",
"I=I*10**-6 # in amp\n",
"id= I*(exp(v/V_T)) # in amp\n",
"print \" The diode current = %0.2f amp\" %id"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The diode current = 1.09 amp\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.4 : Page No - 92"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log\n",
"#Given data\n",
"Vd_1= 0.3 # in V\n",
"V_T= 25 # in mV\n",
"V_T= V_T*10**-3 # in V\n",
"# when Id_1= 1 mA\n",
"Id_1= 1 # in mA\n",
"Id_1=Id_1*10**-3 # in A\n",
"# Formula Id_1= Io*[%e**(Vd/(n*V_T))-1]= Io*[e**(Vd/(n*V_T))]\n",
"# Id_1= Io*[e**(Vd_1/(n*V_T))] (i)\n",
"\n",
"# when Id_2= 200 mA\n",
"Id_2= 200 # in mA\n",
"Id_2=Id_2*10**-3 # in A\n",
"Vd_2= 0.45 # in V\n",
"# Id_2= Io*[e**(Vd_2/(n*V_T))] (ii)\n",
"# Dividing (ii) by (i), we have\n",
"n= (Vd_2-Vd_1)/(log(Id_2/Id_1)*V_T) \n",
"print \" The value of the constant for the diode = %0.2f \" %n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The value of the constant for the diode = 1.13 \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.5 : Page No - 92"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"T=300 # in K\n",
"V_T= T/11600 # in V\n",
"n=1 # assuming value\n",
"Jd=10**5 # in A/m**2\n",
"Jo=250 # in mA/m**2\n",
"Jo= Jo*10**-3 # in A/m**2\n",
"#Formula Id= Io*(%e**(Vd/V_T)-1) and after dividing both the sides by area of the junction, we have\n",
"# Jd= Jo*(%e**(Vd/V_T)) # approx by neglecting 1 \n",
"Vd= V_T*log(Jd/Jo) # in volt\n",
"print \" Voltage to be applied across a p-n junction = %0.2f volt\" %Vd"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Voltage to be applied across a p-n junction = 0.33 volt\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.6 : Page No - 92"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log\n",
"#Given data\n",
"J=10**4 # in A/m**2\n",
"Jo=200 # in mA/m**2\n",
"Jo= Jo*10**-3 # in A/m**2\n",
"T=300 # in K\n",
"V_T= T/11600 # in V\n",
"e=1.6*10**-19 # electrone charge\n",
"k= 1.38*10**-23 \n",
"n=1 # assuming value\n",
"#Formula I= Io*(%e**(e*V/(n*k*T))-1) and after dividing both the sides by area of the junction, we have\n",
"# J= Jo*(%e**(e*V/(n*k*T))) # approx by neglecting 1 \n",
"V= n*k*log(J/Jo)/e \n",
"print \" Voltage to be applied across the junction = %0.2e volts\" %V"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Voltage to be applied across the junction = 9.33e-04 volts\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.7 : Page No - 93"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"n=2 \n",
"V_T=26 # in mV\n",
"Io= 30 # in mA\n",
"# (i) when\n",
"I_D= 0.1 # in mA\n",
"V_D= n*V_T*log(I_D/Io) # in mV\n",
"print \" (i) When I_D is 0.1 mA, The junction forward-bias voltage = %0.f mV\" %V_D\n",
"# (ii) when\n",
"I_D= 10 # in mA\n",
"V_D= n*V_T*log(I_D/Io) # in mV\n",
"print \" (ii) When I_D is 10 mA, The junction forward-bias voltage = %0.f mV\" %V_D\n",
"\n",
"# Note: There is calculation error in the book so answer in the book is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" (i) When I_D is 0.1 mA, The junction forward-bias voltage = -297 mV\n",
" (ii) When I_D is 10 mA, The junction forward-bias voltage = -57 mV\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.8 : Page No - 93"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"I_by_Io= -0.9 \n",
"V_T=26 # in mV\n",
"V_T=V_T*10**-3 #in V\n",
"n=1 \n",
"# From Diode equation I= Io*[e**(e*V/(n*V_T))-1]\n",
"V= n*V_T*log(1+I_by_Io) # in volt\n",
"print \"The value of voltage = %0.1f mV \" %(V*10**3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of voltage = -59.9 mV \n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.9 : Page No - 94"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"nita= 2 \n",
"T1= 25 # in \u00b0C\n",
"T2= 150 # in \u00b0C\n",
"k= 8.62*10**-5 \n",
"V_T150= k*(T2+273) # in V\n",
"V_T25= k*(T1+273) # in V\n",
"V= 0.4 # in V\n",
"# Io150= Io25*2**(T2-T1) \n",
"Io150byIo25= 2**((T2-T1)/10) \n",
"I150byI25= Io150byIo25 *(exp(V/(nita*V_T150))-1)/(exp(V/(nita*V_T25))-1) \n",
"print \" The value of factor = %0.f\" %I150byI25"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The value of factor = 578\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.10 : Page No - 94"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"I_F= 100 # in mA\n",
"I_F=I_F*10**-3 # in A\n",
"V_F= 0.75 # in V\n",
"R_F= V_F/I_F # in ohm\n",
"print \" Forward resistance = %0.1f ohm \" %R_F\n",
"# At\n",
"V_R= 50 # in V\n",
"I_R= 100 # in nA\n",
"I_R= I_R*10**-9 # in A\n",
"R_R= V_R/I_R # in ohm\n",
"print \" Reverse resistance = %0.f Mohm \" %(R_R*10**-6)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Forward resistance = 7.5 ohm \n",
" Reverse resistance = 500 Mohm \n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.11 : Page No - 95"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"I_F= 70 # in mA\n",
"V_F= 26 # in mV\n",
"delta_I_F= 60 # in mA\n",
"delta_I_F=delta_I_F*10**-3 # in A\n",
"delta_V_F= 0.025 # in V\n",
"r_d= delta_V_F/delta_I_F # in ohm\n",
"print \" Dynamic resistance = %0.2f ohm\" %r_d\n",
"# and the stimated value of the dynamic resistance is\n",
"r_d= V_F/I_F # in ohm\n",
"print \" The estimated value of the Dynamic resistance = %0.2f ohm\" %r_d"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Dynamic resistance = 0.42 ohm\n",
" The estimated value of the Dynamic resistance = 0.37 ohm\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.12 : Page No - 95"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"Io= 1 # in micro amp\n",
"Io=Io*10**-6 # in amp\n",
"V_F= 0.52 # in V\n",
"V_R= -0.52 # in V\n",
"nita= 1 \n",
"T=300 # in K\n",
"V_T= T/11600 # in volt\n",
"V_T=round(V_T*10**3) # in mV\n",
"\n",
"# (i)\n",
"r_F= nita*V_T*10**-3/(Io*exp(V_F/(nita*V_T*10**-3))) \n",
"print \"(i) : Dynamic resistance in the forward biased condition = %0.2e ohm\" %r_F\n",
"\n",
"# (ii)\n",
"r_r= nita*V_T*10**-3/(Io*exp(V_R/(nita*V_T*10**-3))) \n",
"print \"(ii) : Dynamic resistance in the reverse biased condition = %0.2e ohm\" %r_r"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) : Dynamic resistance in the forward biased condition = 5.36e-05 ohm\n",
"(ii) : Dynamic resistance in the reverse biased condition = 1.26e+13 ohm\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.13 : Page No - 96"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"V_F= 0.2 # in V\n",
"T=300 # in K\n",
"V_T= T/11600 # in volt\n",
"Io= 1 # in micro amp\n",
"Io=Io*10**-6 # in amp\n",
"Id= Io*(exp(V_F/V_T)-1)\n",
"I_F=Id \n",
"r_dc= V_F/I_F # in ohm\n",
"print \" Dynamic resistance = %0.1f ohm\" %r_dc\n",
"r_ac= .026/I_F # in ohm\n",
"print \" Static resistance = %0.1f ohm\" %r_ac"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Dynamic resistance = 87.6 ohm\n",
" Static resistance = 11.4 ohm\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.14 : Page No - 96"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"# Part (i)\n",
"I_D=2 # in mA\n",
"I_D=I_D*10**-3 # in amp\n",
"V_D= 0.5 # in volt\n",
"R_DC= V_D/I_D # in ohm\n",
"print \"(i) : DC resistance levels for the diode = %0.f ohm\" %R_DC\n",
"\n",
"# Part (ii)\n",
"I_D=20 # in mA\n",
"I_D=I_D*10**-3 # in amp\n",
"V_D= 0.8 # in volt\n",
"R_DC= V_D/I_D # in ohm\n",
"print \"(ii) : DC resistance levels for the diode = %0.f ohm\" %R_DC\n",
"\n",
"# Part (iii)\n",
"I_D=-1 # in micro amp\n",
"I_D=I_D*10**-6 # in amp\n",
"V_D= -10 # in volt\n",
"R_DC= V_D/I_D # in ohm\n",
"print \"(iii) : DC resistance levels for the diode = %0.f Mohm\" %(R_DC*10**-6)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) : DC resistance levels for the diode = 250 ohm\n",
"(ii) : DC resistance levels for the diode = 40 ohm\n",
"(iii) : DC resistance levels for the diode = 10 Mohm\n"
]
}
],
"prompt_number": 27
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.15 : Page No - 97"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"T1= 25 # in \u00b0C\n",
"T2= 100 # in \u00b0C\n",
"deltaT= T2-T1 # in \u00b0C\n",
"deltaV_F= -1.8*10**-3 # in mV/\u00b0C\n",
"I_F= 26 # in mA\n",
"V_F1= 0.7 # in V (at T1)\n",
"V_F2= V_F1+(deltaT*deltaV_F) # in V (at T2)\n",
"# At 25\u00b0C\n",
"T= 25+273 # in K\n",
"rd= 26/I_F*T/298 # in \u03a9\n",
"print \" Junction dynamic resistance at 25\u00b0C = %0.f \u03a9 \" %rd\n",
"# At 100\u00b0C\n",
"T= 100+273 # in K\n",
"rd= 26/I_F*T/298 # in \u03a9\n",
"print \" Junction dynamic resistance at 100\u00b0C = %0.2f \u03a9 \" %rd"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Junction dynamic resistance at 25\u00b0C = 1 \u03a9 \n",
" Junction dynamic resistance at 100\u00b0C = 1.25 \u03a9 \n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.16 : Page No - 97"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"I= 2 # in mA\n",
"I=I*10**-3 # in A\n",
"V_T= 25 # in mV\n",
"V_T= V_T*10**-3 # in V\n",
"nita= 1 \n",
"r_F= nita*V_T/I # in \u03a9\n",
"print \" The dynamic resistance of a diode = %0.1f \u03a9\" %r_F "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The dynamic resistance of a diode = 12.5 \u03a9\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example - 3.17 : Page No - 98"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given data\n",
"I= 30 # in \u00b5A\n",
"I=I*10**-6 # in A\n",
"T=125+273 # in K\n",
"r_F= T/(11600*I*exp(-0.32/T)*11600) # in \u03a9\n",
"print \" The dynamic resistance = %0.3f m\u03a9\" %(r_F*10**3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The dynamic resistance = 98.672 m\u03a9\n"
]
}
],
"prompt_number": 32
}
],
"metadata": {}
}
]
}
|