1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
{
"metadata": {
"name": "",
"signature": "sha256:75345a10ab4b01b2d63b7c49ca20de9a23e8e81cbab11c7f6d702383f9b2feef"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 30 Structure Of Nucleus"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 30.1 Page no 840"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"A1=197\n",
"A2=107.0\n",
"\n",
"#Calculation\n",
"R=(A1/A2)**(0.3)\n",
"\n",
"#Result\n",
"print\"The ratio of the nuclear radii of the gold and silver isotope is\",round(R,3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ratio of the nuclear radii of the gold and silver isotope is 1.201\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 30.2 Page no 840"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"R=1.2*10**-15 #m\n",
"M=1.67*10**-27 #kg\n",
"P1=10**3 #kg m**-3\n",
"\n",
"#Calculation\n",
"import math\n",
"V=1.3*math.pi*(R**3)\n",
"P=M/V\n",
"A=P/P1\n",
"\n",
"#Result\n",
"print\"Nuclear matter is denser than water is\",round(A*10**-14,3),\"*10**14\",\"times\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Nuclear matter is denser than water is 2.366 10**14 times\n"
]
}
],
"prompt_number": 42
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 30.3 Page no 840"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"Mh=4.00150 #a.m.u.\n",
"Mp=1.00728 #a.m.u.\n",
"Mn=1.00867 #a.m.u.\n",
"W0=931.5 #MeV\n",
"\n",
"#Calculation\n",
"A=((2*Mp)+(2*Mn))-Mh\n",
"A1=A*W0\n",
"\n",
"#Result\n",
"print\"Binding energy of a-particle is\",round(A1,2),\"MeV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Binding energy of a-particle is 28.32 MeV\n"
]
}
],
"prompt_number": 49
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 30.4 Page no 840"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"Mp=1.007275 #a.m.u.\n",
"Mn=1.008665 #a.m.u.\n",
"Mh=2.013553 #a.m.u.\n",
"S=2.0\n",
"U=931.5\n",
"\n",
"#Calculation\n",
"A=(Mp+Mn)-Mh\n",
"P=A/S\n",
"W=A*U\n",
"L=W/S\n",
"\n",
"#Result\n",
"print\"The mass defect is\",A,\"a.m.u.\" \n",
"print\"The packing fraction is\",P,\"a.m.u.\"\n",
"print\"The binding energy of deutron is\",round(W,2),\"MeV\"\n",
"print\"The binding energy of per nucleon of deutron is\",round(L,2),\"MeV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The mass defect is 0.002387 a.m.u.\n",
"The packing fraction is 0.0011935 a.m.u.\n",
"The binding energy of deutron is 2.22 MeV\n",
"The binding energy of per nucleon of deutron is 1.11 MeV\n"
]
}
],
"prompt_number": 62
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 30.5 Page no 840"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"Mh=1.007825 #a.m.u.\n",
"Mn=1.008665 #a.m.u.\n",
"Mp=55.934939 #a.m.u.\n",
"Mb=208.980388 #a.m.u.\n",
"A=56.0\n",
"Z=26\n",
"S=931.5\n",
"A1=209.0\n",
"Z1=83\n",
"\n",
"#Calculation\n",
"W=A-Z\n",
"Q=((Z*Mh+W*Mn)-Mp)*S\n",
"R=Q/A\n",
"W1=A1-Z1\n",
"Q1=((Z1*Mh+W1*Mn)-Mb)*S\n",
"R1=Q1/A1\n",
"\n",
"#Result\n",
"print\"The binding energy of the nuclri of Fe is\",round(Q,2),\"MeV\"\n",
"print\"The binding energy of the nuclei of Bi is\",round(Q1,2),\"MeV\"\n",
"print\"Binding energy per nucleon of Fe is\",round(R,2),\"MeV\"\n",
"print\"Binding energy per nucleon of Bi is\",round(R1,3),\"MeV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The binding energy of the nuclri of Fe is 492.26 MeV\n",
"The binding energy of the nuclei of Bi is 1640.26 MeV\n",
"Binding energy per nucleon of Fe is 8.79 MeV\n",
"Binding energy per nucleon of Bi is 7.848 MeV\n"
]
}
],
"prompt_number": 80
}
],
"metadata": {}
}
]
}
|