summaryrefslogtreecommitdiff
path: root/basic_electrical_engineering_by_nagsarkar_and_sukhija/chapter7_Iro5ijO.ipynb
blob: 5cff53b6af8eefd149f6a8b76dc6e7b269f2de5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Chapter 7:Synchronous Machines"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7.1:Page number-412"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "n= 3000.0 rpm\n",
      "D= 0.764 m\n",
      "output of the alternator= 3505.213 KVA\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#case a\n",
    "f=150\n",
    "p=2\n",
    "#assume the diameter of the stator bore is d meter\n",
    "n=120*50/2  #where n is rotor speed\n",
    "print \"n=\",round(n,0),\"rpm\"\n",
    "pi=3.14\n",
    "d=(120*60)/(pi*3000)  \n",
    "print \"D=\",round(d,3),\"m\"\n",
    "#case b\n",
    "k=2\n",
    "l=1\n",
    "o=k*d**2*n*l\n",
    "print \"output of the alternator=\",round(o,3),\"KVA\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7.2:Page number-423 "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The total number of cycles the clock should perform in 24 hours for correct time is= 4320000.0\n",
      "The number of cycles clock performs from 8am to 7pm is= 1977120.0\n",
      "The desired average frequency for correct time for remaining 13 hours is= 50.06154\n",
      "s= 0.8\n",
      "time= 57.6\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#The total number of cycles the clock should perform in 24 hours for correct time is\n",
    "t=24*60*60*50\n",
    "print \"The total number of cycles the clock should perform in 24 hours for correct time is=\",round(t,0)\n",
    "#The number of cycles the clock performs from 8am to 7pm is\n",
    "n=(6*49.95+5*49.90)*60*60\n",
    "print \"The number of cycles clock performs from 8am to 7pm is=\",round(n,0)\n",
    "#the number of cycles required in remaining 13 hours is t-n that is 2342.88*10**3\n",
    "a=(2342.88*10**3)/(13*60*60)\n",
    "print \"The desired average frequency for correct time for remaining 13 hours is=\",round(a,5)\n",
    "#The shortfall in number of cycles from 8am to 7pm\n",
    "s=0.05*6+0.10*5\n",
    "print \"s=\",round(s,3)\n",
    "#The time by which the clock is incorrect at 7pm\n",
    "time=(0.8*60*60)/50\n",
    "print \"time=\",round(time,5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7.3:Page number-423"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "frequency= 50.0 Hz\n",
      "Phase emf= 2301.696 v\n",
      "The line voltage is= 3986.654 v\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#given\n",
    "n=500 #speed to rotation\n",
    "p=12  #poles\n",
    "#case a\n",
    "f=n*p/120  #frequency\n",
    "print \"frequency=\",round(f,0),\"Hz\"\n",
    "#case b\n",
    "kp=1  #kp is the winding at full pitch\n",
    "#kd is the distribution factor where kd=sin[mk/2]/msin(k/2) where k is a gama function\n",
    "#m=108/12*3\n",
    "m=3\n",
    "#gama or k=180/slots per pole=9 k=20\n",
    "#after substituting above values in kd we get kd=0.96\n",
    "#z=108*12/3 = 432\n",
    "ep=2.22*1*0.96*432*50*50*10**-3\n",
    "print \"Phase emf=\",round(ep,3),\"v\"\n",
    "#case c\n",
    "vl=3**0.5*ep\n",
    "print \"The line voltage is=\",round(vl,3),\"v\"\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7.4:Page number-424"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "n= 600.0 rpm\n",
      "phase emf= 1864.44569 v\n",
      "the line voltage= 3229.315 v\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#given\n",
    "f=50 #frequency\n",
    "p=10 #number of poles\n",
    "#case a\n",
    "n=120*f/p\n",
    "print \"n=\",round(n,0),\"rpm\"\n",
    "#case b\n",
    "#the pitch factor kp=0.966\n",
    "#m=2 and gama=180/slots per pole and it is obtained as 30\n",
    "#kd=sin[(mgama)/2]/msin(gama/2)=0.966\n",
    "z=6*2*10\n",
    "ep=z*2.22*0.966*0.966*50*0.15\n",
    "print \"phase emf=\",round(ep,5),\"v\"\n",
    "#case c\n",
    "el=3**0.5*ep\n",
    "print \"the line voltage=\",round(el,3),\"v\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7.5:Page number-436"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "5.44650074006\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#given\n",
    "vt=1905.26 #at angle 0\n",
    "angle=36.87\n",
    "ia=43.74 #at angle -36.87\n",
    "zs=3.51  #at angle 85.91\n",
    "#e=vt+ia*zs\n",
    "#(1905.26+43.74*3.51angle(85.91-36.87))\n",
    "#1905.26+153.35angle(49.04)\n",
    "#1905.26+153.35*(0.6558+j0.7551)\n",
    "#=2009.03 angle(3.31)\n",
    "p=((2009.03-1905.26)/1905.26)*100\n",
    "print p\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7.6:Page number-439"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "4.46227272727\n",
      "-9.335\n",
      "17.7059090909\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#given\n",
    "zs=4 # at angle 84.26\n",
    "xs=3.98\n",
    "impangle=84.26\n",
    "#case a\n",
    "#vt=2200+j0\n",
    "#ia=120\n",
    "#e=vt+ia*zs\n",
    "#on substituting and calculating we get the value of e as 2298.17 at 12 degrees\n",
    "p=((2298.17-2200)/2200)*100\n",
    "print p\n",
    "#case b\n",
    "#performing same functions as above for pf leading 0.8 we get e=1994.63 at 12 degrees\n",
    "p=((1994.63-2200)/2200)*100\n",
    "print p\n",
    "#case c\n",
    "#same as above but pf lags by 0.707 and on calculating generates e as 2589.53\n",
    "p=((2589.53-2200)/2200)*100\n",
    "print p\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7.7:Page number-444"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "load voltage= 209.4847 v\n",
      "the load current is 20.95 at angle -38.65\n",
      "The output of generator1= 2094.4 VA\n",
      "The output of generator2= 2514.6 VA\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#From the circuit diagram of the figure we can obtain tha following equations based on which the problems are solved\n",
    "#eqn 1..........vl=(i1+i2)*zl....the load voltage\n",
    "#eqn 2..........vl=e1-i1*z1=e2-i2*z2\n",
    "#eqn 3..........i1=(e1-vl)*y1 and i2=(e2-vl)*y2\n",
    "#eqn 4..........vl=(e1*y1+e2+y2)/(y1+y2+yl)\n",
    "#load voltage case a\n",
    "#vl=209.26-j*9.7 in x+iy form and angle is calculated \n",
    "vl=(209.26**2+9.7**2)**0.5\n",
    "print \"load voltage=\",round(vl,5),\"v\"\n",
    "#using eqn 3 the following generator currents are generated\n",
    "#i1=7.45-j5.92 for which i1=9.52 at angle -38.45 is generated\n",
    "#i2=8.91-j7.17 for which i2=11.43 at angle -38.83 is generated\n",
    "#case b\n",
    "#the load current il=i1+i2 is obtained as 20.95 at angle -38.65\n",
    "print \"the load current is 20.95 at angle -38.65\"\n",
    "#case c\n",
    "g1=220*9.52\n",
    "g2=220*11.43\n",
    "print \"The output of generator1=\",round(g1,3),\"VA\"\n",
    "print \"The output of generator2=\",round(g2,4),\"VA\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7.8:Page number-446"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "E= 6600.12121 V\n",
      "The power angle=13.63\n",
      "Armature current= 295.18199 A\n",
      "power factor=0.68\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#case a\n",
    "#case 1\n",
    "v=6600  #voltage\n",
    "ir=200  #armature current\n",
    "xs=8   #reactance\n",
    "e=(v**2+(ir*xs))**0.5\n",
    "print \"E=\",round(e,5),\"V\"\n",
    "#case 2\n",
    "#from triangle in the firgure the power angle is obtained as 13.63\n",
    "print \"The power angle=13.63\"\n",
    "#case b\n",
    "#due to excitation we obtain ix=217.10A\n",
    "#case 3\n",
    "ix=217.10\n",
    "i=((ir**2+ix**2))**0.5\n",
    "print \"Armature current=\",round(i,5),\"A\"\n",
    "#case 4\n",
    "#power factor cos(angle)=ir/i=0.68\n",
    "print \"power factor=0.68\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7.9:Page number-447"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "armature current= 356.6275 A\n",
      "power factor= 0.84121\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#this problem has few notations and values taken from problem above\n",
    "#case a\n",
    "#the generator output becomes 1.5*6600*200\n",
    "o=1980 #generator output\n",
    "#the power angle is obtaimed as 16.42\n",
    "#applying cosine to the triangle in the problem gives ixs=2853.02\n",
    "#hence armature current is\n",
    "i=2853.02/8\n",
    "print \"armature current=\",round(i,5),\"A\"\n",
    "#case b\n",
    "pf=1980000/(6600*356.63) #power factor=o/(V*I)\n",
    "print \"power factor=\",round(pf,5)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7.10:Page number-454"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Power supplied to the motor is= 467500.0 kW\n",
      "emf induced=5744.08 at angle -10.39\n",
      "emf induced=7051.44 at angle -8.88\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#case a\n",
    "vl=11000\n",
    "il=50\n",
    "pf=0.85 #powerfactor\n",
    "p=vl*il*pf\n",
    "print \"Power supplied to the motor is=\",round(p,5),\"kW\"\n",
    "#case b\n",
    "vt=6350.85 #at angle 0 \n",
    "zs=25.02 #at angle 0\n",
    "#subcase 1 powerfactor at 0.85 lag\n",
    "#e=vt-ia*zs\n",
    "#e=6350.85-50(at angle -31.79)*25.02(at angle 87.71)\n",
    "#substituting and solving as in x+iy form we get 5744.08 at angle -10.39 as the value of e\n",
    "print \"emf induced=5744.08 at angle -10.39\"\n",
    "#subcase 2\n",
    "#for a 0.85 lead same process as above is followed except angles are considered positive due to lead\n",
    "print \"emf induced=7051.44 at angle -8.88\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example 7.11:Page number-455"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "input KVA to the motor is= 15.069\n",
      "the power factor=0.70\n"
     ]
    }
   ],
   "source": [
    "import math\n",
    "#given and calculted using regular formulas\n",
    "p=14.38\n",
    "q=10.78 #reactive power component \n",
    "pm=8.95 #mechanical load driven by motor \n",
    "#In order to make pf of the circuit load to improve to unity the motor must supply power to the circuit equalling q\n",
    "#hence total input power s to the motor maybe written as s=(pm/n)+jQ\n",
    "#on sustituting values we get s=10.53+j10.78 KVA\n",
    "i=((10.53**2+10.78**2)**0.5)\n",
    "print \"input KVA to the motor is=\",round(i,3)\n",
    "#from the triangle the angle is obtained as 45.67\n",
    "#hence the power factor is cos(45.67)=0.70\n",
    "print \"the power factor=0.70\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}