1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
{
"metadata": {
"name": "MP-7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "The Hydrogen Atom in Wave Mechanics"
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": "Example 7.2 Page 213"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#initiation of variable\nfrom math import exp\nimport math\nfrom scipy import integrate\n# calculating radial probability P= (4/ao^3)*inegral(r^2 * e^(-2r/ao)) between the limits 0 and ao for r\n\n#calculation\ndef integrand(x):\n return ((x**2)*exp(-x))/2.0\nPr=integrate.quad(integrand,0,2,args=());#simplifying where as x=2*r/a0; hence the limits change between 0 to 2\n\n#result\nprint \"Hence the probability of finding the electron nearer to nucleus is\",round(Pr[0],3);\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Hence the probability of finding the electron nearer to nucleus is 0.323\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.3 Page 213"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#initiation of variable\nfrom math import exp\nimport math\nfrom scipy import integrate\n# employing the formula for probability distribution similarly as done in Exa-7.2 \n#calculation\ndef integrand(x):\n return (1.0/8)*((4.0*x**2)-(4.0*x**3)+(x**4))*exp(-x)\nPr1= integrate.quad(integrand,0,1,args=()) #x=r/ao; similrly limits between 0 and 1.\n\n#result\nprint\"The probability for l=0 electron is\",round(Pr1[0],5)\n\n#part2\ndef integrand(x):\n return (1.0/24)*(x**4)*(exp(-x))\nPr2=integrate.quad(integrand,0,1); #x=r/ao; similrly limits between 0 and 1.\n\n#result\nprint\"The probability for l=1 electron is\",round(Pr2[0],5)\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The probability for l=0 electron is 0.03432\nThe probability for l=1 electron is 0.00366\n"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.4 Page 215"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#initiation of variable\nfrom math import exp, sqrt\nimport math\nfrom scipy import integrate\nl=1.0; #given value of l\n\n#calcualtion\nam1=sqrt(l*(l+1)); #angular momentum==sqrt(l(l+1)) h\nl=2.0 #given l\nam2=sqrt(l*(l+1));\n\n#result\nprint\"The angular momenta are found out to be\", round(am1,3),\" h and\",round(am2,3),\" h respectively for l=1 and l=2.\";\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The angular momenta are found out to be 1.414 h and 2.449 h respectively for l=1 and l=2.\n"
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.5 Page 216"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#initiation of variable\nfrom math import sqrt\nprint \"The possible values for m are [+2,-2] and hence any of the 5 components [-2h,2h] are possible for the L vector.\";\nprint\"Length of the vector as found out previously is %.2f*h.\",round(sqrt(6),4);#angular momentum==sqrt(l(l+1)) h",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The possible values for m are [+2,-2] and hence any of the 5 components [-2h,2h] are possible for the L vector.\nLength of the vector as found out previously is %.2f*h. 2.4495\n"
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.6 Page 223"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#initiation of variable\nuz=9.27*10**-24; t=1.4*10**3; x=3.5*10**-2; #various constants and given values\nm=1.8*10**-25;v=750; # mass and velocity of the particle\n\n#calculation\nd=(uz*t*(x**2))/(m*(v**2)); #net separtion \n\n#result\nprint\"The distance of separation in mm is\",round(d*10**3,3);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The distance of separation in mm is 0.157\n"
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "Example 7.7 Page 227"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#initiation of variable\nn1=1.0;n2=2.0;hc=1240.0; #hc=1240 eV.nm\nE=(-13.6)*((1/n2**2)-(1/n1**2)); #Energy calcuation\n\n#calculation\nw=hc/E; #wavelength\nu=9.27*10**-24; B=2; #constants\ndelE= u*B/(1.6*10**-19); #change in energy\ndelw=((w**2/hc))*delE; #change in wavelength\n\n#result\nprint\"The change in wavelength in nm. is\",round(delw,4);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "The change in wavelength in nm. is 0.0014\n"
}
],
"prompt_number": 12
}
],
"metadata": {}
}
]
}
|