summaryrefslogtreecommitdiff
path: root/backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter4_1.ipynb
blob: 350acf213b8e3660dfd648d97ffaaaf7fd634b81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
{
 "metadata": {
  "name": "",
  "signature": "sha256:1d6457e2a94e0fa2b026a0acb8ba4fab526573258ee2c274c4328b7f611fb97a"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "4: Wave mechanical concepts"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 4.1, Page number 59"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "h=6.626*10**-34;    #planck's constant(Js)\n",
      "e=1.6*10**-19;   #conversion factor from J to eV\n",
      "m=9.1*10**-31;    #mass of electron(kg)\n",
      "V=1;    #assume\n",
      "\n",
      "#Calculation\n",
      "lamda=h/math.sqrt(2*m*e*V);    #debroglie wavelength(m)\n",
      "\n",
      "#Result\n",
      "print \"debroglie wavelength is math.sqrt(\",int((lamda*10**10)**2),\"/V) angstrom\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "debroglie wavelength is math.sqrt( 150 /V) angstrom\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 4.2, Page number 59"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "h=6.626*10**-34;    #planck's constant(Js)\n",
      "c=3*10**8;    #velocity of light(m/sec)\n",
      "e=1.6*10**-19;   #conversion factor from J to eV\n",
      "m=9.1*10**-31;    #mass of electron(kg)\n",
      "KE=100*10**6;   #kinetic energy(eV)\n",
      "\n",
      "#Calculation\n",
      "p=math.sqrt(2*m*e);     #momentum(kg m/s)\n",
      "lamda1=h/p;    #debroglie wavelength for 1 eV(m)\n",
      "lamda2=h*c/(KE*e);    #debroglie wavelength for 100 MeV(m)\n",
      "\n",
      "#Result\n",
      "print \"debroglie wavelength for 1 eV is\",round(lamda1*10**9,1),\"nm\"\n",
      "print \"debroglie wavelength for 100 MeV is\",round(lamda2*10**15,2),\"*10**-15 m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "debroglie wavelength for 1 eV is 1.2 nm\n",
        "debroglie wavelength for 100 MeV is 12.42 *10**-15 m\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 4.3, Page number 64"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m=9.1*10**-31;    #mass of electron(kg)\n",
      "v=4*10**6;    #speed of electron(m/s)\n",
      "sp=1/100;     #speed precision\n",
      "hbar=1.05*10**-34;  \n",
      "\n",
      "#Calculation\n",
      "p=m*v;   #momentum(kg m/s)\n",
      "deltap=p*sp;    #uncertainity in momentum(kg m/s)\n",
      "deltax=hbar/(2*deltap);   #precision in position(m)\n",
      "\n",
      "#Result\n",
      "print \"precision in position is\",round(deltax*10**9,2),\"nm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "precision in position is 1.44 nm\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 4.4, Page number 64"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "c=3*10**8;    #velocity of light(m/sec)\n",
      "lamda=4000*10**-10;    #wavelength(m)\n",
      "deltat=10**-8;    #average lifetime(s)\n",
      "\n",
      "#Calculation\n",
      "delta_lamda=lamda**2/(4*math.pi*c*deltat);   #width of line(m)\n",
      "\n",
      "#Result\n",
      "print \"width of line is\",round(delta_lamda*10**15,2),\"*10**-15 m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "width of line is 4.24 *10**-15 m\n"
       ]
      }
     ],
     "prompt_number": 16
    }
   ],
   "metadata": {}
  }
 ]
}