summaryrefslogtreecommitdiff
path: root/backup/Modern_Physics_By_G.Aruldas_version_backup/Chapter3_1.ipynb
blob: 4d816cd262572d83b0011efb5d60f5a2dca83293 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
{
 "metadata": {
  "name": "",
  "signature": "sha256:b6d6dfa593701249cd6d305eb45cecde030c3502c19d325045b7e05cf46a035c"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "3: Atomic models"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.1, Page number 45"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "N=6.02*10**23;    #avagadro number(atoms/mole)\n",
      "rho=19.3;   #density(g/cc)\n",
      "A=197;   #atomic weight(g)\n",
      "k=8.984*10**9;  #value of k(Nm**2/C**2)\n",
      "Z=79;\n",
      "Zdash=2;\n",
      "e=1.6*10**-19;   #conversion factor from J to eV\n",
      "m=2;\n",
      "v0=8*10**6;  \n",
      "t=2*10**-6;   #thickness(m)\n",
      "\n",
      "#Calculation\n",
      "n=N*rho*10**6/A;    #number of atoms(per m**3)\n",
      "b=k*Z*Zdash*e/(m*v0);   #impact parameter(m)\n",
      "f=math.pi*b**2*n*t;    #fraction of particles scattered\n",
      "\n",
      "#Result\n",
      "print \"fraction of particles scattered is\",round(f*10**5,1),\"*10**-5\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "fraction of particles scattered is 7.5 *10**-5\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.3, Page number 48"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "h=6.626*10**-34;    #planck's constant(Js)\n",
      "c=3*10**8;    #velocity of light(m/sec)\n",
      "e=1.6*10**-19;   #conversion factor from J to eV\n",
      "E=10.5;   #energy(eV)\n",
      "\n",
      "#Calculation\n",
      "E=(13.6+E)*e;   #energy of photon(J)\n",
      "lamda=h*c/E;   #wavelength(m)\n",
      "\n",
      "#Result\n",
      "print \"wavelength of photon is\",round(lamda*10**9,2),\"nm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "wavelength of photon is 51.55 nm\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.4, Page number 49"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "k=8.98*10**9;  #value of k(Nm**2/C**2)\n",
      "e=1.6*10**-19;   #conversion factor from J to eV\n",
      "n=1;  #assume\n",
      "a0=0.53*10**-10;    #radius of orbit(m)\n",
      "\n",
      "#Calculation\n",
      "PE=-k*(e**2)/(a0*e*n**2);   #potential energy(eV)\n",
      "E=-13.6/n**2;   #energy(eV)\n",
      "KE=E-PE;   #kinetic energy(eV)\n",
      "\n",
      "#Result\n",
      "print \"kinetic energy is\",round(KE,1),\"/n**2 eV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "kinetic energy is 13.5 /n**2 eV\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 3.6, Page number 51"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "Mbyme=1836;    \n",
      "lamda=6562.8;    #wavelength for hydrogen(angstrom)\n",
      "\n",
      "#Calculation\n",
      "mew_dashbymew=2*(1+Mbyme)/(1+(2*Mbyme));\n",
      "lamda_dash=lamda/mew_dashbymew;    #wavelength for deuterium(angstrom)\n",
      "\n",
      "#Result\n",
      "print \"wavelength for deuterium is\",int(lamda_dash),\"angstrom\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "wavelength for deuterium is 6561 angstrom\n"
       ]
      }
     ],
     "prompt_number": 14
    }
   ],
   "metadata": {}
  }
 ]
}