1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
{
"metadata": {
"name": "",
"signature": "sha256:f048d58df41f2578c151ef59f03652004b6758b9e666d170255be2c66115bfe2"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"2: Particle nature of radiation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 2.1, Page number 28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"h=6.626*10**-34; #planck's constant(Js)\n",
"new=100*10**6; #frequency(Hz)\n",
"P=100*10**3; #power(watt)\n",
"\n",
"#Calculation\n",
"E=h*new; #quantum of energy(J)\n",
"n=P/E; #number of quanta emitted(per sec)\n",
"\n",
"#Result\n",
"print \"number of quanta emitted is\",round(n/10**29,2),\"*10**29 per sec\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of quanta emitted is 15.09 *10**29 per sec\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 2.2, Page number 31"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"h=6.626*10**-34; #planck's constant(Js)\n",
"c=3*10**8; #velocity of light(m/sec)\n",
"lamda=400*10**-9; #wavelength(m)\n",
"e=1.6*10**-19; #conversion factor from J to eV\n",
"w0=2.28; #work function(eV)\n",
"m=9.1*10**-31; #mass of electron(kg)\n",
"\n",
"#Calculation\n",
"E=h*c/(lamda*e); #energy(eV)\n",
"KEmax=E-w0; #maximum kinetic energy(eV)\n",
"v2=2*KEmax*e/m; \n",
"v=math.sqrt(v2); #velocity(m/s)\n",
"\n",
"#Result\n",
"print \"maximum kinetic energy is\",round(KEmax,3),\"eV\"\n",
"print \"velocity of photoelectrons is\",round(v/10**5,2),\"*10**5 m/s\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"maximum kinetic energy is 0.826 eV\n",
"velocity of photoelectrons is 5.39 *10**5 m/s\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 2.3, Page number 31"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"h=6.626*10**-34; #planck's constant(Js)\n",
"c=3*10**8; #velocity of light(m/sec)\n",
"lamda=2000*10**-10; #wavelength(m)\n",
"e=1.6*10**-19; #conversion factor from J to eV\n",
"w0=4.2; #work function(eV)\n",
"\n",
"#Calculation\n",
"lamda0=h*c/(w0*e); #cut off wavelength(m)\n",
"E=h*c/(lamda*e); #energy(eV)\n",
"sp=E-w0; #stopping potential(eV)\n",
"\n",
"#Result\n",
"print \"cut off wavelength is\",int(lamda0*10**10),\"angstrom\"\n",
"print \"stopping potential is\",round(sp,2),\"V\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"cut off wavelength is 2958 angstrom\n",
"stopping potential is 2.01 V\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 2.4, Page number 33"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"h=6.626*10**-34; #planck's constant(Js)\n",
"c=3*10**8; #velocity of light(m/sec)\n",
"lamda=0.2*10**-9; #wavelength(m)\n",
"\n",
"#Calculation\n",
"p=h/lamda; #momentum(kg m/s)\n",
"m=p/c; #effective mass(kg)\n",
"\n",
"#Result\n",
"print \"momentum is\",round(p*10**24,1),\"*10**-24 kg m/s\"\n",
"print \"effective mass is\",round(m*10**32,1),\"*10**-32 kg\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"momentum is 3.3 *10**-24 kg m/s\n",
"effective mass is 1.1 *10**-32 kg\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 2.5, Page number 35"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"h=6.626*10**-34; #planck's constant(Js)\n",
"c=3*10**8; #velocity of light(m/sec)\n",
"lamda=0.15; #wavelength(nm)\n",
"m0=9.1*10**-31; #mass of electron(kg)\n",
"theta1=0; #scattering angle1(degrees)\n",
"theta2=90; #scattering angle2(degrees)\n",
"theta3=180; #scattering angle3(degrees)\n",
"\n",
"#Calculation\n",
"theta1=theta1*math.pi/180; #scattering angle1(radian)\n",
"theta2=theta2*math.pi/180; #scattering angle2(radian)\n",
"theta3=theta3*math.pi/180; #scattering angle3(radian)\n",
"lamda_dash1=lamda+(h*(1-math.cos(theta1))/(m0*c)); #wavelength at 0(nm)\n",
"lamda_dash2=lamda+(10**9*h*(1-math.cos(theta2))/(m0*c)); #wavelength at 90(nm)\n",
"lamda_dash3=lamda+(10**9*h*(1-math.cos(theta3))/(m0*c)); #wavelength at 180(nm)\n",
"\n",
"#Result\n",
"print \"wavelength at 0 degrees is\",lamda_dash1,\"nm\"\n",
"print \"wavelength at 90 degrees is\",round(lamda_dash2,3),\"nm\"\n",
"print \"wavelength at 180 degrees is\",round(lamda_dash3,3),\"nm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"wavelength at 0 degrees is 0.15 nm\n",
"wavelength at 90 degrees is 0.152 nm\n",
"wavelength at 180 degrees is 0.155 nm\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 2.6, Page number 36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"h=6.626*10**-34; #planck's constant(Js)\n",
"c=3*10**8; #velocity of light(m/sec)\n",
"e=1.6*10**-19; #conversion factor from J to eV\n",
"E=2*0.511*10**6; #rest energy(eV)\n",
"\n",
"#Calculation\n",
"lamda=h*c/(E*e); #wavelength of photon(m)\n",
"\n",
"#Result\n",
"print \"wavelength of photon is\",round(lamda*10**12,2),\"*10**-12 m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"wavelength of photon is 1.22 *10**-12 m\n"
]
}
],
"prompt_number": 21
}
],
"metadata": {}
}
]
}
|