1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
{
"metadata": {
"name": "",
"signature": "sha256:eeb9c551735bd0ab45890fc906baf874437271bf852063fccc60d822b2aaeaef"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"20: Nuclear radiation detectors and particle accelerators"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 20.1, Page number 390"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"h=6.626*10**-34; #planck's constant(Js)\n",
"e=1.6*10**-19; #conversion factor from J to eV\n",
"m=1.67*10**-27; #mass of proton(kg)\n",
"E=30*10**6; #energy(eV)\n",
"r=1.2*10**-15; #radius of nucleon(m)\n",
"\n",
"#Calculation\n",
"lamdaP=h/math.sqrt(2*m*E*e); #wavelength of proton(m)\n",
"lamdaAlpha=h/math.sqrt(2*4*m*E*e); #wavelength of alpha particle(m)\n",
"a=2*r; #size of nucleon(m)\n",
"\n",
"#Result\n",
"print \"wavelength of proton is\",round(lamdaP*10**15,1),\"*10**-15 m\"\n",
"print \"wavelength of alpha particle is\",round(lamdaAlpha*10**15,1),\"*10**-15 m\"\n",
"print \"size of nucleon is\",a,\"m\"\n",
"print \"alpha particle is better\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"wavelength of proton is 5.2 *10**-15 m\n",
"wavelength of alpha particle is 2.6 *10**-15 m\n",
"size of nucleon is 2.4e-15 m\n",
"alpha particle is better\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 20.2, Page number 391"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"q=1.6*10**-19; #conversion factor from J to eV\n",
"B=2; #magnetic field(T)\n",
"m=1.67*10**-27; #mass of proton(kg)\n",
"R=0.25; #radius(m)\n",
"a=6.24*10**12; #conversion factor from J to MeV\n",
"\n",
"#Calculation\n",
"f=q*B/(2*math.pi*m); #frequency needed(MHz)\n",
"KE=q**2*B**2*R**2/(2*m); #kinetic energy(J)\n",
"KE=KE*a; #kinetic energy(MeV)\n",
"\n",
"#Result\n",
"print \"frequency needed is\",round(f*10**-6,1),\"MHz\"\n",
"print \"kinetic energy is\",round(KE),\"MeV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"frequency needed is 30.5 MHz\n",
"kinetic energy is 12.0 MeV\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|