1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
{
"metadata": {
"name": "",
"signature": "sha256:8689775b6694dc6c6ea95bc809bbd7280d9553003ec1dbe78844db2dc6fa68f3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"16: Fibre optics and holography"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 16.1, Page number 306"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"n2=1.4; #refractive index of cladding\n",
"n1=1.43; #refractive index of core\n",
"\n",
"#Calculation\n",
"costhetac=n2/n1; \n",
"thetac=math.acos(costhetac); #propagation angle(radian)\n",
"thetac=thetac*180/math.pi; #propagation angle(degrees)\n",
"NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
"thetaa=math.asin(NA); #angle(radian)\n",
"thetaa=thetaa*180/math.pi; #angle(degrees)\n",
"thetaa=2*thetaa; #acceptance angle(degrees)\n",
"\n",
"#Result\n",
"print \"propagation angle is\",round(thetac,1),\"degrees\"\n",
"print \"numerical aperture is\",round(NA,4)\n",
"print \"acceptance angle is\",round(thetaa,2),\"degrees\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"propagation angle is 11.8 degrees\n",
"numerical aperture is 0.2914\n",
"acceptance angle is 33.88 degrees\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 16.3, Page number 311"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"z=30; #length of optical fibre(km)\n",
"alpha=0.8; #fibre loss(dB/km)\n",
"Pi=200; #input power(micro W)\n",
"\n",
"#Calculation\n",
"a=alpha*z/10;\n",
"b=10**a;\n",
"P0=Pi/b; #output power(micro W)\n",
"\n",
"#Result\n",
"print \"output power is\",round(P0,3),\"micro W\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"output power is 0.796 micro W\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|