1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 6: Strengthening Mechanisms"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 6.1, Grain Size Measurement, Page No. 193"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Yield Stress = 254.464 MPa\n"
]
}
],
"source": [
"from math import sqrt\n",
"\n",
"#variable declaration\n",
"sigma_i=150;\n",
"k=0.7;\n",
"n=6;\n",
"\n",
"#calculation\n",
"N_x=2**(n-1);\n",
"N=N_x/(0.01)**2; #in grains/in^2\n",
"N=N*10**6/25.4**2; # in grains/m^2\n",
"D=sqrt(1/N);\n",
"sigma0=sigma_i+k/sqrt(D);\n",
"\n",
"#result\n",
"print ('\\nYield Stress = %g MPa')%(sigma0);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 6.2, Strengthing Mechanism, Page No. 219"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Particle Spacing = 2.3e-08 m\n",
"Particle Size = 7.35948e-10 m\n"
]
}
],
"source": [
"#variable declaration\n",
"sigma0=600;\n",
"G=27.6;\n",
"G=G*10**9 #conversion to Pa\n",
"b=2.5*10**-8;\n",
"b=b*10**-2; #conversion to m\n",
"T0=sigma0/2;\n",
"T0=T0*10**6; #conversion to Pa\n",
"\n",
"#calculation\n",
"lambda1=G*b/T0;\n",
"Cu_max=54;\n",
"Cu_eq=4;\n",
"Cu_min=0.5;\n",
"rho_al=2.7;\n",
"rho_theta=4.43;\n",
"wt_a=(Cu_max-Cu_eq)/(Cu_max-Cu_min);\n",
"wt_theta=(Cu_eq-Cu_min)/(Cu_max-Cu_min);\n",
"V_a=wt_a/rho_al;\n",
"V_theta=wt_theta/rho_theta;\n",
"f=V_theta/(V_a+V_theta);\n",
"r=(3*f*lambda1)/(4*(1-f));\n",
"\n",
"#result\n",
"print('\\nParticle Spacing = %g m\\nParticle Size = %g m')%(lambda1,r);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 6.3, Fiber Strengthing, Page No. 222"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Ec for 10 vol% = 92 GPa\n",
"\n",
"\n",
"Ec for 60 vol% = 252 GPa\n",
"\n"
]
}
],
"source": [
"#variable declaration\n",
"Ef=380;\n",
"Em=60;\n",
"\n",
"#calculation\n",
"#Case 1\n",
"f_f1=0.1;\n",
"Ec1=Ef*f_f1+(1-f_f1)*Em;\n",
"\n",
"#Case 2\n",
"f_f2=0.6;\n",
"Ec2=Ef*f_f2+(1-f_f2)*Em;\n",
"\n",
"#result\n",
"print('\\nEc for 10 vol%% = %g GPa\\n')%(Ec1);\n",
"print('\\nEc for 60 vol%% = %g GPa\\n')%(Ec2);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 6.4, Load Transfer, Page No. 225"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"sigma_cu = 2.55 GPa for L=100um\n",
"\n",
"sigma_cu = 0.596875 GPa for L=2mm\n"
]
}
],
"source": [
"#variable declaration\n",
"sigma_fu=5;\n",
"sigma_fu=sigma_fu*10**9; #Conversion to Pa\n",
"sigma_m=100;\n",
"sigma_m=sigma_m*10**6; #Conversion to Pa\n",
"T0=80;\n",
"T0=T0*10**6; #Conversion to Pa\n",
"f_f=0.5;\n",
"d=100;\n",
"d=d*10**-6;\n",
"B=0.5;\n",
"L1=10;\n",
"L1=L1*10**2; #conversion to m\n",
"Lc=sigma_fu*d/(2*T0);\n",
"sigma_cu1=sigma_fu*f_f*(1-Lc/(2*L1))+sigma_m*(1-f_f);\n",
"sigma_cu1=sigma_cu1*10**-9;\n",
"print('\\nsigma_cu = %g GPa for L=100um\\n')%(sigma_cu1);\n",
"\n",
"L2=2;\n",
"L2=L2*10**-3; #conversion to m\n",
"sigma_cu2=sigma_fu*f_f*(1-Lc/(2*L2))+sigma_m*(1-f_f);\n",
"sigma_cu2=sigma_cu2*10**-9;\n",
"print('sigma_cu = %g GPa for L=2mm')%(sigma_cu2);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|