summaryrefslogtreecommitdiff
path: root/backup/Fluid_Mechanics-Fundamentals_&_Applications_version_backup/Chapter14.ipynb
blob: 3dea9b5b0b4814275bf74e53eda9d192f151e958 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
{
 "metadata": {
  "name": "",
  "signature": "sha256:f0e9b0e6ec9189526906ddc4e7e3f751013d08f921dd1d0821502bb66e87b78c"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 14: Turbomachinery"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-1, Page No:767"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "\n",
      "#Variable Deceleration\n",
      "V_dot_cfm=range(0,1500,250) #Volumetric Flow rate in cubic feet per second\n",
      "V_dot_mps=transpose(V_dot_cfm)/2118.83 #Volumetric flow rate in m^/s\n",
      "rho_air=1.184 #Density of air in kg/m^3\n",
      "rho_water=998 #Density of water in kg/m^3\n",
      "Patm=101.3 #Atmospheric Pressure in kPa\n",
      "v=1.562*10**-5 #Kinematic Viscosity in m^2/s\n",
      "D=0.23 #Diameter in m\n",
      "g=9.81 #Acceleration due to gravity in m/s^2\n",
      "f=0.0209 #Friction coefficient from table\n",
      "L=13.4 #Length in m\n",
      "V=6.81 #Velocity of flow in m/s\n",
      "alpha=1.05 #Constant\n",
      "C=(1/0.0254) #Conversion factor\n",
      "\n",
      "#Minor Loss Coefficients\n",
      "ml_1=1.3\n",
      "ml_2=0.21\n",
      "ml_3=1.8\n",
      "\n",
      "#Calculations\n",
      "Re=(4*V_dot_mps)/(v*pi*D)  #Reynolds Number\n",
      "\n",
      "#Friction coefficient values from Moddy Chart\n",
      "f1=[0,0.023,0.022,0.0185,0.0175,0.0162]\n",
      "f=transpose(f1)\n",
      "\n",
      "#Cross Sectional Area\n",
      "A=(pi*D**2)/4 #Area of the pipe cross section in m^2\n",
      "\n",
      "V1=transpose(V_dot_mps)/A #Velocity array in m/s\n",
      "V=transpose(V1) #Velocity in m/s\n",
      "\n",
      "#Minor Losses\n",
      "Kl=ml_1+(5*ml_2)+ml_3 #Minor losses \n",
      "\n",
      "H_required=(alpha+(f*(L/D))+Kl)*(V**2/(2*g)) #Required net head in m of air\n",
      "\n",
      "H_required_inches=H_required*(rho_air/rho_water)*C #Head Required in inches of water\n",
      "\n",
      "H_av=[0.9,0.95,0.9,0.77,0.4,0] #Table values taken fro plotting\n",
      "\n",
      "#Result\n",
      "print \"The Plot shows the variation of the head required and the head available as a function\"\n",
      "print \"Of V_dot. The intersection point tells the operating point.\"\n",
      "\n",
      "plt.plot(V_dot_cfm,H_required_inches,V_dot_cfm,H_av)\n",
      "plt.ylabel('H,inches H2O')\n",
      "plt.xlabel('V_dot,cfm')\n",
      "plt.show()\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Plot shows the variation of the head required and the head available as a function\n",
        "Of V_dot. The intersection point tells the operating point.\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEQCAYAAACugzM1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOX5xvHvwy6yKoiyKCAiIFQRRERpUnGlbq2i6K/u\ntWpR61ZsbWtStSogrlTcUMEFqGIV6opL0IIisiiyKChWRAUE2SFkeX5/vAOEEEJCZnJmMvfnuuZi\n5szJzD2I8+Q972bujoiIyM5UizqAiIgkNxUKEREplQqFiIiUSoVCRERKpUIhIiKlUqEQEZFSJaxQ\nmFkdM5tqZrPMbK6Z3bmT8x4wswVm9omZdU1UHhER2T01EvXC7r7JzH7h7hvMrAbwXzM7xt3/u+Uc\nM+sLtHP3g8zsSGA40DNRmUREpPwSeunJ3TfE7tYCqgMri51yGjAydu5UoJGZNUtkJhERKZ+EFgoz\nq2Zms4ClwLvuPrfYKS2AxUUefwu0TGQmEREpn0S3KArd/TDCl//PzSyzhNOs+I8lMpOIiJRPwvoo\ninL31Wb2CtAdyCny1BKgVZHHLWPHtmNmKh4iIrvB3Yv/Ml5uiRz11MTMGsXu7wEcD8wsdtp44ILY\nOT2BVe6+tKTXc/eUvWVlZUWeIR2zK3/0N+WP9hYviWxR7AeMNLNqhIL0tLu/bWaXA7j7I+7+qpn1\nNbOFwHrg4gTmERFJmHXroF69qFMkRiKHx84GDi/h+CPFHl+VqAwiIpVh7Vro0QOeegqOPDLqNPGn\nmdmVIDMzM+oIuy2Vs4PyRy0d8rvDb38LvXtXzSIBYPG8jpUoZuapkFNE0s/998OoUTB5MtSpE3Wa\n7ZkZHofObBUKEZHdNHky/PrX8OGH0KZN1Gl2FK9CoUtPIiK7YelS6N8fnnwyOYtEPKlQiIiUU34+\nnHsuXHwx9O0bdZrE06UnEZFy+vOfYcYMePVVqF496jQ7F69LT5UyM1tEpKp4+WV47jmYPj25i0Q8\nqUUhIlJGCxdCr17wn/+EeRPJTp3ZIiKVaMMGOPNM+PvfU6NIxJNaFCIiu+AOF10EhYVhzoRV+Hf0\nyqE+ChGRSvLYY6Hz+sMPU6dIxJNaFCIipfj44zAE9r//hfbto05TPuqjEBFJsBUroF8/ePjh1CsS\n8aQWhYhICQoL4Ze/hM6dYciQqNPsHrUoREQS6Pbbw0inO++MOkn01JktIlLM66/Do4+G/oka+pZU\noRARKep//wtDYZ9/HvbdN+o0yUGXnkREYnJz4ayzYODAsBGRBOrMFhGJufJKWL48tCaqwnwJTbgT\nEYmjUaPgnXdg2rSqUSTiSS0KEUl7n34KffrAu++G4bBVhYbHiojEwerVYbG/++6rWkUintSiEJG0\n5R72vG7RAoYNizpN/KmPQkSkgu6+G77/HsaMiTpJclOhEJG0lJMD99wDH30EtWtHnSa5qY9CRNLO\nd9/BeefB009Dq1ZRp0l+KhQiklby8uDss2HAADjuuKjTpAZ1ZotIWrn+evjiCxg/HqpV8V+Vk354\nrJm1MrN3zWyOmX1mZteUcE6mma02s5mx218TlUdE5Pnn4aWXwiWnql4k4imRndl5wHXuPsvM6gHT\nzWyiu88rdt4kdz8tgTlERJg/H37/e3jjDWjcOOo0qSVhNdXdf3D3WbH764B5QPMSTtVkeRFJqHXr\nwqS6u+6Cww+POk3qqZTGl5m1BroCU4s95UAvM/vEzF41s06VkUdE0oc7/O530LMnXHpp1GlSU8Ln\nUcQuO70A/CHWsihqBtDK3TeY2cnAS0Aa70wrIvE2bFi47DR5ctRJUldCC4WZ1QTGAc+4+0vFn3f3\ntUXuv2ZmD5nZXu6+svi52dnZW+9nZmaSmZmZkMwiUnV88EHY0vSDD2CPPaJOk3g5OTnk5OTE/XUT\nNjzWzAwYCaxw9+t2ck4zYJm7u5n1AP7l7q1LOE/DY0WkXJYtg27dYPhwOOWUqNNEIxXWejoa+A3w\nqZnNjB27GdgfwN0fAc4CrjSzfGAD0D+BeUQkTRQUwLnnwoUXpm+RiCdNuBORKucvf4GpU8NQ2OrV\no04TnVRoUYiIVLoJE8KEuunT07tIxJMKhYhUGV99Bb/9Lbz8MjRtGnWaqkOT2EWkSti4MUyq+9vf\nwpwJiR/1UYhIynMPk+k2bYJnnwXTeg+A+ihERLYaMSJ0Xk+dqiKRCGpRiEhKmz4dTj4Z3n8fDj44\n6jTJJemXGRcRSbSVK+Gss+Chh1QkEkktChFJSYWFcOqp0KEDDB0adZrkpBaFiKS1O+6ANWvC0uGS\nWOrMFpGUM3FiWMNp2jSoWTPqNFWfCoWIpJRvvoHzz4exY6F5SVuhSdzp0pOIpIzcXOjXD264ATIy\nok6TPtSZLSIpY8AA+O47ePFFzZcoC024E5G08swzoW9i2jQVicqmFoWIJL3Zs+HYY+Gdd6BLl6jT\npA4NjxWRtLBmTVjs7957VSSiohaFiCQt9zDzulmzMPtaykd9FCJS5d1zDyxeDM89F3WS9KZCISJJ\n6b33YMgQ+OgjqF076jTpTX0UIpJ0vv8ezj0XRo6E/fePOo2oUIhIUsnLg3POgcsvhxNPjDqNgDqz\nRSTJ3HgjzJ0L//kPVNOvshWizmwRqXJeeAHGjYOPP1aRSCZqUYhIUvj8c+jdG157Dbp1izpN1aAJ\ndyJSZaxfHybV/eMfKhLJSC0KEYmUO/zmN1CrFjzxhNZxiif1UYhIlTB8OMyZA1OmqEgkK7UoRCQy\nU6eGfa+nTIF27aJOU/Woj0JEUtry5XD22fDYYyoSyS5hhcLMWpnZu2Y2x8w+M7NrdnLeA2a2wMw+\nMbOuicojIsmjoADOOy/cTj896jSyK4nso8gDrnP3WWZWD5huZhPdfd6WE8ysL9DO3Q8ysyOB4UDP\nBGYSkSSQnR2KxW23RZ1EyiJhhcLdfwB+iN1fZ2bzgObAvCKnnQaMjJ0z1cwamVkzd1+aqFwiEq1X\nXoGnngqT6mpoOE1KqJQ+CjNrDXQFphZ7qgWwuMjjb4GWlZFJRCrfokVwySUwdmzYY0JSQ8Lreeyy\n0wvAH9x9XUmnFHtc4vCm7OzsrfczMzPJzMyMU0IRqQybNoVJdX/5C/TqFXWaqiknJ4ecnJy4v25C\nh8eaWU3gP8Br7n5fCc8/DOS4+5jY4/lARvFLTxoeK5L6LrsM1q6F0aM1X6KyJP3wWDMzYAQwt6Qi\nETMeuCB2fk9glfonRKqeJ56AyZPh8cdVJFJRwloUZnYM8B7wKdsuJ90M7A/g7o/EzhsGnASsBy52\n9xklvJZaFCIpauZMOOGEsGNdx45Rp0kv8WpR7LJQmFlb4BDCl/1cd/+qom9aXioUIqnpp5+ge3e4\n446wGZFUroQXCjNrADwOdAdmxQ4fBkwHLnX3NRV987JSoRBJPYWFYTLdgQfCfTu7+CwJVRmLAj4I\nzAX6u3th7E2rAX8FhhHrWxARKUlWFqxcGTYiktRWWotiobuXuAJLac8lgloUIqnlrrvCpLpJkzRf\nIkqV0aLQN7OIlNu994bRTSoSVUdpw2M/MLNbYsNcgTDk1cz+BnyQ+Ggikmr++U944AF45x1o0SLq\nNBIvpV16akiYB3E423dmzyR0Zq+qlITo0pNIKnjsMbj9dsjJgTZtok4jULnDY9sBnQiXoua5+8KK\nvml5qVCIJLeRI8PSHDk52lsimVRmoajp7nnFjjV19+UVffOyUqEQSV5jxsD114fLTR06RJ1Gikr4\nEh5m9gsz+xb4wczeNLOijck3K/rGIpL6xo2Da6+FN99UkajKSuvMHgKcCDQBHgUmmtlRlZJKRJLe\nhAnw+9/Da69B585Rp5FEKm14bC13nxO7/0Js46EXzeymSsglIkns9dfh0kvDJkRdtYFxlVdaodhs\nZvvGdqrD3eeYWR/gFeDASkknIknn7bfhggvgpZfgiCOiTiOVobRLT38G9i16wN2/BTKAuxIZSkSS\n03vvQf/+8MIL2nwonSR046J40agnkeh98EFY5G/0aOjTJ+o0UhYJX8LDzGYXeehsv2Wpu/vPKvrm\nIpIapk0LRWLUKBWJdFRaH8WpRe6/AvRlx/2tRaSKmzULTjkFRoyAk06KOo1EYaeFwt2/3nLfzDa7\n+/8qJZGIJI3PPoOTT4aHHoJTT931+VI1JWzPbBFJbfPnhy1M77kHzjwz6jQSpdL6KLqxrW9iDzM7\nPHbfAUra21pEqoaFC+H44+HOO+Hcc6NOI1ErbfXYHLbtSWEU25/C3X+R0GTbZ9GoJ5FK8vXXkJEB\nf/0rXHZZ1GmkIiptUcBkoEIhUjkWLw5F4oYbYMCAqNNIRSV8UUARSS/ffQfHHgtXXaUiIdtToRAR\nli4N8yMuvTQsGS5SlAqFSJr78Uc47riwNMef/hR1GklGuywUZnaMmdWL3T/fzO4xswMSH01EEm3l\nyjC66dRT4ZZbok4jyaosLYrhwHozOxS4HvgSGJXQVCKScKtXw4knhn6Jf/wDTOsuyE6UpVDkx4Yc\nnQH8093/CdRPbCwRSaS1a8OM65494e67VSSkdKWt9bTFWjO7GfgN0NvMqgM1ExtLRBJl/fqwdlPn\nznD//SoSsmtlaVGcA2wCLoltYtSCsE3qLpnZE2a2tNhKtEWfzzSz1WY2M3b7a5mTi0i5bdwYVoFt\n0wYefhiqaTiLlEGZJtyZWWugnbu/ZWZ1gRruvqYMP9cbWAeMcvcuJTyfCVzv7qft4nU04U6kgnJz\n4YwzoHFjePppqF496kSSaJU24c7Mfgc8DzwSO9QS+HdZXtzd3wd+2tVblOW1RGT3bd4M/frBnnuG\nPSVUJKQ8ytLwHAAcA6wBcPcvgH3i9P4O9DKzT8zsVTPrFKfXFZGY/Hw477zQF/Hcc1CjLD2TIkWU\n5Z9MrrvnWqzHy8xqUGyBwAqYAbRy9w1mdjLwEtC+pBOzs7O33s/MzCQzMzNOEUSqroICOP982LAB\n/v1vqFUr6kSSSDk5OeTk5MT9dXfZR2FmQ4BVwAXAVcDvgbnu/pcyvUHo35hQUh9FCecuArq5+8pi\nx9VHIVJOhYVwySWwZAmMHw977BF1Iqlslbko4J+A5cBs4HLgVSAuo5PMrJnFmipm1oNQuFbu4sdE\nZBcKC+GKK2DRInj5ZRUJqZiELjNuZqOBDKAJsBTIIjYHw90fMbMBwJVAPrCBMALqwxJeRy0KkTJy\nh6uvhhkz4I03oL6mx6atStuPwsyOIXzBt2Zbn4a7e9uKvnlZqVCIlI073HgjvP8+TJwIDRtGnUii\nFK9CUZbO7BHAtYSO54KKvqGIJIY7/OUv8M474aYiIfFSlkKxyt1fS3gSEamQW2+FCRPg3XfDpDqR\neCltz+xusbv9gOrAi0DulufdfUbC023LoktPIqW4884wkS4nB5o1izqNJIuE91GYWQ6lzJdw919U\n9M3LSoVCZOfuuQeGD4dJk6B586jTSDKptM7sZKBCIVKyYcNCoZg0CVq1ijqNJJvKXOvpDjNrVORx\nYzO7vaJvLCIV8+ijMGRI6LhWkZBEKsuEu77uvmrLA3f/Cfhl4iKJyK6MHAm33QZvvw2tW0edRqq6\nshSKamZWZ8sDM9sD0IoxIhEZPRpuvjnMk2jXLuo0kg7KMjz2WeBtM3uCsCT4xWjPbJFIjBsH118f\nikSHDlGnkXRR1o2LTgaOI4yCmujubyQ6WLH3V2e2pL3x4+Gyy8KyHIcdFnUaSQUa9SSSRl57DS68\nEF59Fbp3jzqNpIrKHPV0ppktMLM1ZrY2dtvlNqgiEh9vvRWKxMsvq0hINMqyKOCXwCnuPq9yIpWY\nQS0KSUuTJoUtTMeNg969o04jqaYy96P4IcoiIZKupkwJRWLMGBUJiVZZRj19bGZjCduUbo4dc3d/\nMXGxRNLbtGlwxhnw9NNw7LFRp5F0V5ZC0RDYCJxQ7LgKhUgCzJwJp5wCI0bAiSdGnUZEo55Eksrs\n2XD88fDQQ/DrX0edRlJdwjcuMrOb3H2QmT1YwtPu7tdU9M1FZJv580ML4r77VCQkuZR26Wlu7M/p\nbL/cuFHK8uMiUn4LFsBxx8Fdd0H//lGnEdmeLj2JRGzRIsjIgFtugd/+Nuo0UpVU5p7Zxd/4DmA1\n8Li7r6hoAJF09s03YVTTn/6kIiHJqyzzKIqbBhQA98U5i0haWbIkFIk//AF+//uo04jsnC49iUTg\nhx8gMxMuvhhuuinqNFJVVcaop6KjnZzQib31sUY9ieye5ctDx/V556lISGoorY9iy2gnA/4O3MK2\nYqFf70V2w8qVYZ7E6afD3/4WdRqRsinrfhQz3b1rJeTZ2fvr0pOkvJ9+ghNOCCOchgwBq/AFAZHS\nVeaigCJSQVOmQNeuofNaRUJSTbmHx4pI2RUUwKBB8MAD8OijcNppUScSKb/SOrPXsa0vYg8zW1vk\naXf3Brt68dg+278Elrl7l52c8wBwMrABuMjdZ5Y1vEgy++47OP98yM+Hjz+Gli2jTiSye3Z66cnd\n67l7/ditRpH79ctSJGKeBE7a2ZNm1hdo5+4HAb8DhpcrvUiSeuUVOPzw0B/xzjsqEpLaEnrpyd3f\nN7PWpZxyGjAydu5UM2tkZs3cfWkic4kkSm4u/PnPYUe655/XhkNSNUTdR9ECWFzk8bdAS0CFQlLO\nggVhQb/99w97Suy1V9SJROIj6kIB20/kg53M0cjOzt56PzMzk8zMzMQlEimnp5+G66+Hv/8drrxS\no5okGjk5OeTk5MT9dRO+hEfs0tOEkjqzzexhIMfdx8Qezwcyil960jwKSVZr14Z1mqZPD3tb/+xn\nUScS2aaqzKMYD1wAYGY9gVXqn5BUMX166LCuUyfsca0iIVVVQi89mdloIANoYmaLgSygJoC7P+Lu\nr5pZXzNbCKwHLk5knmTj7mzK38SqTatYnbuaVZtWsSZ3DXVr1qVRnUZbb3vW3BPTtYykUVgYdqG7\n6y548EE455yoE4kkllaPrQB3Z2P+RlZtWrX1tnrT6u0eb73llnBs0yoAGtdpvLUo1K9dnw15G7Y7\nZ3PBZhrWbrhd8WhYpyGNajfa7tjObvVq1VOhiZNly8KKrytWwOjR0KZN1IlEdi5el57SulC4+w5f\nylu/8HN38oVf7Fa9WvWSv6BL+BJvWKfhDsfq1Kizy5x5BXllzlNS/o15G2lYp+EOxaast3q16lHN\nor5KGb2334YLLgi3W2+FmjWjTiRSOhUKwhf9+rz1pX9hbvkNfye/0deqXit8ie/Gl2jD2g2pXaN2\nBH8j5ZNXkMea3DVlLizFb+vz1tOgdoMyF8TiRbFB7QYpXWjy8iArC0aOhKeeCqu/iqSCtCsUZ449\ns8Qvt9rVa5f8JVWGyzIN6zSkVvVaUX+8pJdfmF9iodnhMttOivG6zeuoX6t+if8NmtRtwsF7H0zH\nph3p2KQje9fdO+qPu52vv4Zzz4VGjUKh2GefqBOJlF3aFYrn5zxf4m/0Naur/Z/sCgoLWJO7psRW\ny7L1y5j/43zm/TiPucvnUqdGHTo26Uinpp22/dm0I/vV26/S+1mefx4GDAibC113HVRL3UaRpKm0\nKxSpkFMqxt35ft33zF0+l3nL520tHvN+nEdufu7WVkfRInJAowPifllrw4ZQGN5+O8yN6N49ri8v\nUmlUKCStrNiwYlvhKFJEVmxcQfu922/fAmnSkXZ7tdut1uZnn4Xhrl27wkMPQYOyLn8pkoRUKESA\ntblrt7t0Ne/HecxbPo9vVn9D28Zt6di0I52adNraGjm4ycHUrVl3h9dxh0ceCduT3n13GNmkEcWS\n6lQoREqxKX8TC1Ys2Fo8tvy5cOVC9qu339aWR8emHWlZuxPDsjqyeGFDxoyBgw+OOr1IfKhQiOyG\n/MJ8vvrpK+YtD8Vj0tx5vPvZXHzv+TSt3zC0QIoUkU5NO9G0blNNWJSUpEIhUgEFBXDnnTBsGDz+\nOPT9ZSHfrvl2ax9I0ZaIme3QB9KxaUdaNWilAiJJTYVCZDctWQK/+U24/8wz0KLFzs91d5atX7Zd\n/8fcH0MxWbt5LR2adNhWPGKFpE3jNtSolgwr+Eu6U6EQ2Q3/+Q/89rdw1VVhJ7rq1Xf/tVZtWrXD\nMN65y+fyw7ofOGivg3boSG+/d/uUmMkvVYcKhUg55ObCwIHw0kvw3HNw9NGJe6/1m9fz+YrPdygi\ni35axKH7Hsr1Pa/nzE5nqtUhCadCIVJGn38etiht2zb0RzRuHE2OzQWbeX3h6wyZMoQla5Zww1E3\ncHHXi0scrisSDyoUIrvgDqNGwY03wm23weWXJ8/ciCmLpzBkyhAmfzOZAUcMYECPATSp2yTqWFLF\nqFCIlGLNmrBF6cyZMHYsdO4cdaKSzf9xPkOnDGXcvHH8X5f/4/qjrqdNY21yIfFRVbZCFYm7jz8O\nW5TuuWfYojRZiwRAhyYdeOy0x5jz+znUq1WP7o91p/8L/Zn+3fSoo4lspRaFVBmFhXDvvTBoEPzz\nn9CvX9SJym9N7hoem/4Y9354Lx2adGDg0QM5vu3xmq8hu0WXnkSKWLYMLrwQVq8Oo5pat446UcVs\nLtjMmM/GMHjyYGpUq8HAowfSr1M/Lasv5aJCIRLz1luhSFx0EWRnV60tSt2d1xa+xuDJg/l61ddc\n1/M6Lj38UurVqhd1NEkBKhSS9vLy4JZbwsimUaOgT5+oEyXW1G+nMmTKECb9bxJXdLuCq4+8mn32\n1JZ7snMqFJLWFi0KW5TuvXfYx7pp06gTVZ4FKxYw9IOhjJ0zlv6H9OeGXjfQbq92UceSJKRRT5K2\nxo6FI48MGwxNmJBeRQLgoL0P4uFTHmb+gPk0qduEo0YcRb/n+/HRko+ijiZVlFoUkjLWr4drr4Wc\nnLBFabduUSdKDus2r2PEjBHc8+E9tGnUhoFHD+TkdidrpJTo0pOkl08/DS2II44IQ1/r1486UfLJ\nK8jjX3P+xeApgyn0Qv7Y64/079yfWtVrRR1NIqJCIWnBPexdnZ0N99wD558fdaLk5+5M/GoigycP\n5vMVn3Ndz+u47PDLqF9b1TXdqFBIlbdyJVx6KXzzTbjUdNBBUSdKPdO/m86QKUN466u3uOzwy7jm\nyGvYr/5+UceSSqLObKnS3n8funaFNm1gyhQVid3VrXk3xpw1ho8u+4i1m9fS6aFOXDb+Mj7/8fOo\no0kKSWihMLOTzGy+mS0ws5tKeD7TzFab2czY7a+JzCPJr6AAbr0Vzj4bhg8Pl5tqa6+fCmvbuC3D\n+g7ji6u+oEWDFvR+sje/GvsrPlj8QdTRJAUk7NKTmVUHPgeOA5YA04Bz3X1ekXMygevd/bRdvJYu\nPaWBb78NW5RWqxa2KG3ePOpEVdeGvA08OfNJhn4wlBYNWjCw10B+2f6XVDNdZKhKUuHSUw9gobt/\n7e55wBjg9BLO0xg+Yfx46N4dTjgBJk5UkUi0ujXrMqDHAL64+guuOuIqsidlc8hDh/DEzCfIzc+N\nOp4kmUQWihbA4iKPv40dK8qBXmb2iZm9amadEphHktCmTXDNNeH24otw880V28dayqdGtRqc0/kc\nPr7sY4adPIyxc8bS9oG2DJ48mNWbVkcdT5JEIgtFWa4VzQBaufuhwIPASwnMI0nEHV5/HXr2hO++\nCxsM9eoVdar0ZWb0aduHN37zBq+c9wqfLv2Utg+0ZeDEgSxZsyTqeBKxRO7uvgRoVeRxK0KrYit3\nX1vk/mtm9pCZ7eXuK4u/WHZ29tb7mZmZZGZmxjuvVIL8/LAEx+DBoVjcfHOYSKdJxMnjsH0P45lf\nP8P/Vv2Pez+8ly7Du3BGhzO4sdeNdGqqRn8yy8nJIScnJ+6vm8jO7BqEzuw+wHfAR+zYmd0MWObu\nbmY9gH+5e+sSXkud2Slu/XoYMSKMYmrdGm66CU46SQUiFazYsILhHw9n2EfD6NGiBwOPHsjRrY7W\nEiEpICUm3JnZycB9QHVghLvfaWaXA7j7I2Y2ALgSyAc2EEZAfVjC66hQpKgff4QHHwxDXXv3hoED\nw4J+kno25m1k5CcjGfrBUJrUbcLAXgM5vcPpGimVxFKiUMSLCkXqWbQotB6efRbOOgtuvBHat486\nlcRDQWEBL81/iUGTB7E6dzU3HnUj5x96PnVq1Ik6mhSjQiFJadas0P/w5ptw2WVhNNN+WjGiSnJ3\n3vvfewyeMpgZ38/gmh7XcEX3K2i8R+Ooo0mMCoUkDXd4910YNAjmzAlLgf/ud9CgQdTJpLLMXjqb\nuz+4mwmfT+Diwy7m2p7X0qphq13/oCSUCoVErqAgzH0YNCh0Vg8cCOedpyU30tni1Yu5f+r9PDHz\nCU5pfwo3HX0Th+xzSNSx0pYKhURm40YYORLuvhv22SeMYDr11LD0hgjAqk2rGD5tOPdNvY+MAzK4\nJeMWOu/TOepYaUeFQirdTz+FvSEefBB69AgtiGOOiTqVJLN1m9cxfNpwhn4wlN4H9OaWn99Cl2Zd\noo6VNlJhrSepIhYvhhtugHbtYOFCePvtsDaTioTsSr1a9fjj0X/ky2u+5MgWR3L808dz1r/O4tOl\nn0YdTcpBhUJ2as4cuOgiOPTQ8PiTT+DJJ+EQXXKWctqz1p7c2OtGvrzmS45qeRQnPnMiZ/7rTD75\n4ZOoo0kZqFDIdtzDpkGnngp9+oS5D19+CUOHQsuWUaeTVLdnrT25odcNfHnNlxzd6mhOevYkfjX2\nV8z6YVbU0aQU6qMQAAoLYcKEMIJp+fIwQe7CC6GO5lBJAm3I28Cj0x9l8OTB9GjRg6yMLLru1zXq\nWFWGOrMlLnJzw+zpIUOgXr0wgulXv9JS31K5NuZt5NHpjzJo8iCOaHEEWRlZHL7f4VHHSnkqFFIh\na9bAI4/AffdBly6hQGRmapE+idbGvI08NuMxBk0eRLf9upGVkUW35t2ijpWyVChkt3z/Pdx/Pzz+\nOJx4Ivzxj3DYYVGnEtnepvxNPDY9FIyu+3UlKyOL7s27Rx0r5Wh4rJTLF1+EtZcOOQQ2bICPPw6X\nnFQkJBnVqVGHq4+8moXXLOTEA0/kjDFncMpzpzBtybSoo6UltSiquKlTwyJ9778PAwaEW5MmUacS\nKZ9N+ZvCq+9AAAAL3ElEQVQYMWMEd02+iy77dCErI4sjW2q9+l3RpSfZKXd47bVQIL7+OkyWu+QS\n2HPPqJOJVExufi5PzHyCO/57B5336UxWRhY9W/aMOlbSUqGQHeTlwZgxoUBUrx6W2Dj7bKiRyA1v\nRSKQm5/Lk7Oe5I7376BT005kZWRxVKujoo6VdFQoZKt167ZtM3rggWEE0wknaASTVH25+bk8Nesp\n7vjvHXRo0oGsjCx6teoVdaykoUIhLFsGw4aFbUYzM0ML4ogjok4lUvk2F2wOBeP9O2i/d3uyMrI4\nev+jo44VORWKNPbVV2FJjdGjw6WlG28MC/aJpLvNBZsZOWskd/z3Dtrt1Y6sjCyO2T99V69UoUhD\nM2aE/oe33oLLLw/bjDZrFnUqkeSzuWAzoz4ZxT/e/wdtG7clOyOb3gf0jjpWpVOhSBPuYVnvQYNg\n/ny47rowH6J+/aiTiSS/vIK8rQWjdaPWZGdm8/MDfh51rEqjQlHF5efDuHGhBbFpU+h/OPdcqFUr\n6mQiqSevII9nPn2G29+/nf0b7k9WRhaZrTOjjpVwKhRV1MaNYc+HoUOhefMwgqlvX20zKhIPeQV5\nPDv7WW5/73ZaNmhJdmZ2lS4YKhQpLi8v7PMwf/72t3nz4Be/CC2IXhrlJ5IQ+YX5PPvps9z23m20\naNCC7IxQMKyKjSlXoUgRP/0En3++Y0H4+mto1Qo6dNjxtvfeUacWSQ/5hfk8N/s5bn/vdvatty9Z\nGVkc2+bYKlMwVCiSSGEhfPPNjsVg/nxYv77kYtCuHdSuHXVyEYFQMEbPHs1t791Gs3rNyMrIok+b\nPilfMFQoIrBhQ1iFtXgx+OKL0AooqSA0b64Z0iKpIr8wnzGfjeG2926jad2mZGVkcVzb41K2YKhQ\nJIg7LF1acutg6dLQEiheDNq313BVkaqkoLCAsXPGcuukW9lrj73Izszm+LbHp1zBSIlCYWYnAfcB\n1YHH3X1QCec8AJwMbAAucveZJZwT90Kxs87k+fOhZs2SWwetW2uLUJF0UlBYwL/m/Itb37uVRnUa\nkZ2RzQkHnpAyBSPpC4WZVQc+B44DlgDTgHPdfV6Rc/oCV7l7XzM7Erjf3XdYM7gihaK8nckHHxz/\n/RpycnLIzMyM74tWklTODsoftaqSv6CwgOfnPs+tk26lQe0GZGdmc+KBJyZ9wUiFHe56AAvd/Wt3\nzwPGAKcXO+c0YCSAu08FGplZuRelKCyERYvCHgz33QdXXBEWydt3X9h/f7j66jC7uX59OP/8MJFt\n9WpYsAAmTIAhQ+DSS+HooxOzqU9OTk78X7SSpHJ2UP6oVZX81atVp3/n/sy+cjbX9byOG968gZ4j\nevLqgldJhcv3FZXInQpaAIuLPP4WKL4lVUnntASWlvSC69eX3Jm8YMH2ncldukC/fupMFpH4ql6t\nOud0Pod+h/TjhbkvMHDiQLJzssnKyKLvQX2TvoWxuxJZKMpaZov/zZb4cwccEJbVLtqZfNppYWKa\nOpNFpDJVs2qcfcjZnNXpLMbNHcef3v4T2ZOyGXXGKDo27Rh1vLhLZB9FTyDb3U+KPf4zUFi0Q9vM\nHgZy3H1M7PF8IMPdlxZ7rarfthMRSYB49FEkskXxMXCQmbUGvgPOAc4tds544CpgTKywrCpeJCA+\nH1RERHZPwgqFu+eb2VXAG4ThsSPcfZ6ZXR57/hF3f9XM+prZQmA9cHGi8oiIyO5JiQl3IiISnaRe\nvNrMTjKz+Wa2wMxuijpPScyslZm9a2ZzzOwzM7smdnwvM5toZl+Y2Ztm1qjIz/w59pnmm9kJ0aXf\nxsyqm9lMM5sQe5wS+c2skZm9YGbzzGyumR2ZKtmL5JljZrPN7Dkzq53M+c3sCTNbamazixwrd14z\n6xb7zAvM7P6I8w+J/fv5xMxeNLOGqZS/yHM3mFmhme0V9/zunpQ3wuWqhUBroCYwC+gYda4Scu4L\nHBa7X48wybAjMBgYGDt+E3BX7H6n2GepGftsC4FqSfA5rgeeBcbHHqdEfsI8nEti92sADVMoe2vg\nK6B27PFY4MJkzg/0BroCs4scK0/eLVcxPgJ6xO6/CpwUYf7jt/w9AnelWv7Y8VbA68AiYK9450/m\nFkVZJuxFzt1/cPdZsfvrgHmE+SFbJxPG/jwjdv90YLS757n714T/eD0qNXQxZtYS6As8zrbhykmf\nP/abX293fwJCv5i7ryYFssesAfKAumZWA6hLGPiRtPnd/X3gp2KHy5P3SDPbD6jv7h/FzhtV5GcS\nqqT87j7R3QtjD6cS5nJBiuSPuQcYWOxY3PInc6EoaTJei4iylElshFdXwj+2Zr5tBNdSYMuM8+aE\nz7JFMnyue4E/AoVFjqVC/jbAcjN70sxmmNljZrYnqZEdd18JDAW+IRSIVe4+kRTJX0R58xY/voTk\n+BwAlxB+w4YUyW9mpwPfuvunxZ6KW/5kLhQp1ctuZvWAccAf3H1t0ec8tO9K+zyRfVYzOwVY5mEx\nxhKHISdx/hrA4cBD7n44YeTcn4qekMTZMbMDgWsJlwWaA/XM7DdFz0nm/CUpQ96kZWZ/ATa7+3NR\nZykrM6sL3AxkFT0c7/dJ5kKxhHDdbYtWbF8Fk4aZ1SQUiafd/aXY4aVmtm/s+f2AZbHjxT9Xy9ix\nqPQCTjOzRcBo4Fgze5rUyP8t4TepabHHLxAKxw8pkB2gOzDF3Ve4ez7wInAUqZN/i/L8W/k2drxl\nseORfg4zu4hw+fX/ihxOhfwHEn7R+CT2/3BLYLqFNfPilj+ZC8XWCXtmVoswYW98xJl2YGYGjADm\nuvt9RZ4aT+iYJPbnS0WO9zezWmbWBjiI0LEUCXe/2d1buXsboD/wjrufTwrkd/cfgMVm1j526Dhg\nDjCBJM8eMx/oaWZ7xP4dHQfMJXXyb1Gufyux/25rYiPUDDi/yM9UOgvbIfwRON3dNxV5Kunzu/ts\nd2/m7m1i/w9/CxweuxQYv/yV0VNfgR7+kwmjiBYCf446z04yHkO4tj8LmBm7nQTsBbwFfAG8CTQq\n8jM3xz7TfODEqD9DkVwZbBv1lBL5gUMJS9h/QviNvGGqZI/lGUgobrMJHcE1kzk/odX5HbCZ0Id4\n8e7kBbrFPvNC4IEI818CLAD+V+T/34dSIH/ulr//Ys9/RWzUUzzza8KdiIiUKpkvPYmISBJQoRAR\nkVKpUIiISKlUKEREpFQqFCIiUioVChERKZUKhYiIlEqFQqo0M3un+L4NZnatmT1Uhp99yszO3MU5\n15rZHuXMNDq298EfyvNzIlFRoZCqbjRhaZKizgHKsvBbWRa4+wNhefAyia2J1N3dD3X3StvwRqQi\nVCikqhsH/DK238OWpeCbu/t/SzrZzIbFdgObCOxDbCVOM+sTW8r8UzMbEVs/5xrCqq/vmtnbJbzW\nEWY22cxmmdmHsRWG3wRaWNhN8BgzyzGze8xsWmyXtSPM7N8Wdou7LRF/ISLlpUIhVZqHPR8+IqwM\nCqF1Mbakc83s10B7wg6FFxBW1nUzqwM8CZzt7j8jLG9+pbs/QFh3J9Pd+xR7rVqEzbaucffDCAv+\nbQROBb50966xYuVArrsfAQwHXgauADoDF5lZ4/j8TYjsPhUKSQdFLz+dE3tckt7Acx58D7wTO34w\nsMjdF8YejwR+vov3PBj43t2nQ9j90N0LKHmvgC2rIn8GfObuS919M2GBt/138T4iCadCIelgPNDH\nzLoCdT1s0rQzJX2RF++nsBKOVURu7M/CIve3PK4ex/cR2S0qFFLledjL/F3C5aPSOrHfA84xs2qx\nDXh+ETv+OdA6tiMdhPX7J8XurwUabHkBMxtlZt0JyzrvF7uPmdU3M33pS0pSoZB0MRrows4vO+Hu\n/ybsTTCXcHlpSux4LmHfhefN7FMgH3g49mOPAq8X6czuAnzn7nmEy1wPmtks4A2g9pa32lmEUp4T\niYz2oxCJEzNrADzm7udEnUUknlQoRESkVDWiDiBS2cysCzCq2OFN7n5UFHlEkp1aFCIiUip1ZouI\nSKlUKEREpFQqFCIiUioVChERKZUKhYiIlOr/AXlSO7gvU2MeAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x10bc1ac10>"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-2, Page No:770"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "rho=998 #Density in kg/m^3\n",
      "g=9.81 #Acceleration due to gravity in m/s^2\n",
      "V_dot=0.0233 #Volumetric flow rate in m^3/s\n",
      "H_small=7.3 #Head in m\n",
      "H_big=21.9 #Head in m\n",
      "n_pump_small=0.7 #Efficiency of the pump in fraction small\n",
      "n_pump_big=0.765 #Efficiency of pump in fraction big\n",
      "#Calculations\n",
      "bhp_small=(rho*g*V_dot*H)/n_pump_small #Required bhp in kW\n",
      "\n",
      "#Similarly for 241.3mm impeller we get 6.53kW\n",
      "bhp_big=(rho*g*V_dot*H_big)/n_pump_big\n",
      "\n",
      "#Result\n",
      "print \"The required bhp is\",round(bhp_small,2),\"W\"\n",
      "print \"The required bhp is\",round(bhp_big,2),\"W\"\n",
      "print \"Clearly the small one is better as it uses less power\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required bhp is 2378.92 W\n",
        "The required bhp is 6530.38 W\n",
        "Clearly the small one is better as it uses less power\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-4, Page No:780"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "n_dot=900 #Speed in rpm\n",
      "V_closed=0.45 #Volume of motor oil in cm^3\n",
      "n=0.5 #Number of rotations\n",
      "\n",
      "#Calculations\n",
      "V_dot=n_dot*(2*V_closed/n) #Volumetric Fow rate in cm^3/min\n",
      "\n",
      "#Result\n",
      "print \"The volumetric Flow rate is\",round(V_dot),\"cm^3/min\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The volumetric Flow rate is 1620.0 cm^3/min\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-5, Page No:784"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "n_dot=1750 #Speed in rpm\n",
      "w=183.3 #Angular Speed in rad/s\n",
      "g=9.81 #Acceleration due to gravity in m/s^2\n",
      "alpha1=0 #Angle in degrees\n",
      "alpha2=40 #Angle in degrees\n",
      "b1=0.052 #Inlet blade width in m\n",
      "b2=0.023 #Outlet blade width in m\n",
      "V_dot=0.13 #Volumetric Flow rate in m^3/s\n",
      "rho_water=1000 #Density of water in kg/m^3\n",
      "rho_air=1.2 #Density of air in kg/m^3\n",
      "r1=0.04 #Inlet radius in m\n",
      "r2=0.08 #Outlet radius in m\n",
      "\n",
      "#Calcualtions\n",
      "V1_n=V_dot/(2*pi*r1*b1) #Normal Component of Velocity in m/s\n",
      "V1=V1_n #Since Vt is zero Velocity in m/s\n",
      "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of velocity in m/s\n",
      "V2_t=V2_n*tan((alpha2*pi)/180) #Tangential Component of velocity in m/s\n",
      "\n",
      "#Applying the Bernoullis principle \n",
      "H=(w/g)*(r2*V2_t) #Net head in m\n",
      "Hwater_column=H*(rho_air/rho_water)*1000 #Equivalent water column in mm of water\n",
      "\n",
      "bhp=rho_air*g*V_dot*H #bhp required in W\n",
      "\n",
      "#Result\n",
      "print \"The net Head produced is\",round(Hwater_column),\"mm of water\"\n",
      "print \"The brake horsepower required is\",round(bhp,1),\"W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The net Head produced is 17.0 mm of water\n",
        "The brake horsepower required is 21.6 W\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-6, Page No:786"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "r1=0.1 #Inlet Radius in m\n",
      "r2=0.18 #Outlet radius in m\n",
      "b1=0.05 #Inlet width in m\n",
      "b2=0.03 #Outlet width in m\n",
      "V_dot=0.25 #Volumetric Flow rate delivered in m^3/s\n",
      "n=1720 #Speed of the impeller in rpm\n",
      "rho=1226 #Density of the fluid in kg/m^3\n",
      "g=9.81 #Acceleration due to gravity in m/s^2\n",
      "H=14.5 #Head in m\n",
      "\n",
      "#Calculations\n",
      "#Required horse power\n",
      "W_water_horsepower=rho*g*V_dot*H #Required Horse Power in W\n",
      "W_dot_water_hp=W_water_horsepower/745.7 #Required Horse Power in hp\n",
      "\n",
      "w=n*(2*pi/60) #Angular Speed in rad/s\n",
      "\n",
      "beta1=(arctan((V_dot)/(2*pi*b1*w*r1**2)))*(180/pi) #Blade inlet angle in degrees\n",
      "\n",
      "#Using elemetary analysis\n",
      "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of Velocity in m/s\n",
      "\n",
      "V2_t=(g*H)/(w*r2) #Tangential Component of velocity in m/s\n",
      "\n",
      "#Simplfying Calculation\n",
      "a=w*r2-V2_t\n",
      "\n",
      "beta2=arctan(V2_n/a)*(180/pi) #Angle in degrees\n",
      "\n",
      "#Result\n",
      "print \"The angel beta1 is\",round(beta1,2),\"degrees\"\n",
      "print \"The angle beta2 is\",round(beta2,2),\"degrees\"\n",
      "print \"The horsepower required is\",round(W_dot_water_hp,1),\"hp\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The angel beta1 is 23.84 degrees\n",
        "The angle beta2 is 14.73 degrees\n",
        "The horsepower required is 58.5 hp\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-7, Page No:792"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "D_propeller=0.34 #Overall Diameter of the propeller in m\n",
      "alpha=14 #Angle of attack in degrees\n",
      "n=1700 #Speed of the propeller in rpm\n",
      "D_hub=0.055 #Diameter of the hub assembly in m\n",
      "V=13.4 #Velocity of the plane in m/s\n",
      "\n",
      "#Calculations\n",
      "C=60/(2*pi) #Conversion factor\n",
      "phi1=(arctan((V*C)/(n*D_hub*0.5)))*(180/pi) #Angle in degrees\n",
      "theta1=alpha+phi1 #Pitch Angle at arbitrary radius  in degrees\n",
      "phi2=(arctan((V*C)/(n*D_propeller*0.5)))*(180/pi) #Angle in degrees\n",
      "theta2=alpha+phi2 #Pitch angle at the tip in degrees\n",
      "\n",
      "#Result\n",
      "print \"The pitch angle at any radius is\",round(theta1,1),\"degrees\"\n",
      "print \"The pitch angle at the tip is\",round(theta2,1),\"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The pitch angle at any radius is 83.9 degrees\n",
        "The pitch angle at the tip is 37.9 degrees\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-8,Page No:797"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "V_in=47.1 #Velocity at the inlet in m/s\n",
      "beta_st=60 #trailing edge at Angle in degrees\n",
      "n=1750 #Speed of the impeller in rpm\n",
      "r=0.4 #Radius in m\n",
      "\n",
      "#Calculations\n",
      "V_st=V_in/cos((beta_st*pi)/180) #Velocity leaving the trail in m/s\n",
      "\n",
      "u_theta=((n*2*pi)/60)*r #Tangential Velocity of rotor blades in m/s\n",
      "\n",
      "beta_r1=(arctan((u_theta+V_in*tan((beta_st*pi)/180))/V_in))*(180/pi) #Angle of leading edge in degrees\n",
      "\n",
      "beta_rt=(arctan(u_theta/V_in))*(180/pi) #Angle in degrees\n",
      "\n",
      "#Result\n",
      "print \"The leading edge and trailing edge angles are\",round(beta_r1,2),\"degrees and\",round(beta_rt,2),\"degrees\"\n",
      "print \"We select number like 13 15 and 17  rotor blades\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The leading edge and trailing edge angles are 73.09 degrees and 57.28 degrees\n",
        "We select number like 13 15 and 17  rotor blades\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-9, Page No:802"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "n=1170 #Speed of the pump in rpm\n",
      "H=23.5 #Required head in ft\n",
      "V_dot=320 #Gasoline pumped gallon/minute\n",
      "Ratio=3.658*10**-4 #Nsp/Nsp_US ratio\n",
      "\n",
      "#Calcualtions\n",
      "Nsp_US=(n*V_dot**0.5)/(H**0.75) #Pump specific speed in US units\n",
      "Nsp=Nsp_US*(Ratio) #Normalizes pump specific speed\n",
      "\n",
      "#Result\n",
      "print \"The Nsp_US value is\",round(Nsp_US,2),\"and Nsp value is\",round(Nsp,3),\"which tells\"\n",
      "print \"A centrifugal Pump is the best suitable one\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Nsp_US value is 1960.92 and Nsp value is 0.717 which tells\n",
        "A centrifugal Pump is the best suitable one\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-10, Page No:804"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "wa=1 #Setting as unit speed\n",
      "\n",
      "#Calculations\n",
      "wb=2*wa #Speed \n",
      "bhp_ratio=(wb/wa)**3 #Ratio od required shaft power \n",
      "\n",
      "#Result\n",
      "print \"The ratio of required shaft power is\",round(bhp_ratio)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The ratio of required shaft power is 8.0\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-11, Page No:805"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "\n",
      "#Variable Decleration\n",
      "D_A=0.06 #Diameter of pump A in m\n",
      "n_A=1725 #Operating Speed in rpm\n",
      "w_A=180.6 #Operating Angular Speed in rad/s\n",
      "V_B_dot=2.4*10**-3 #Volumetric Flow rate in m^3/s\n",
      "V_A_dot=5*10**-4 #Volumetric Flow rate in m^3/s\n",
      "H_A=1.5 #Head in m\n",
      "rho_water=998 #Density of water in kg/m^3\n",
      "g=9.81 #Acceleration due to gravity in m/s^2\n",
      "n_pump_A=0.81 #Efficiency of pump A in fraction\n",
      "H_B=4.5 #Head in m\n",
      "rho_B=1226 #Density of fluid in kg/m^3\n",
      "\n",
      "#Calculations\n",
      "#Part(a)\n",
      "bhp_A=(rho_water*g*V_A_dot*H_A)/n_pump_A #Required Power in W\n",
      "\n",
      "C_Q=V_A_dot/(w_A*D_A**3) #Capacity Coefficient \n",
      "\n",
      "C_H=(g*H_A)/(w_A**2*D_A**2) #Head Coefficient\n",
      "\n",
      "C_P=bhp_A/(rho_water*w_A**3*D_A**5) #Power Coefficient\n",
      "#Plotting\n",
      "V_dot1=range(100,800,100) #Volumetric flow rate in cm^3/s\n",
      "H1=[180,185,175,170,150,95,54] #Head in cm\n",
      "n_pump1=[32,54,70,79,81,66,38] #Efficiency of the pump in percentage\n",
      "#BHP calculations\n",
      "V_dot=transpose(V_dot1)\n",
      "H=transpose(H1)\n",
      "n_pump=transpose(n_pump1)\n",
      "bhp_A1=rho_water*g*V_dot\n",
      "bhp_A2=bhp_A1*H\n",
      "bhp_A=bhp_A2/n_pump\n",
      "\n",
      "\n",
      "fig = plt.figure()\n",
      "ax = fig.add_subplot(111)\n",
      "ax.plot(V_dot1,bhp_A)\n",
      "plt.xlabel('V_dot,cm^3/s')\n",
      "plt.ylabel('H,cm and n in %')\n",
      "ax2 = ax.twinx()\n",
      "ax2.plot(V_dot1,H1,V_dot1,n_pump1)\n",
      "plt.ylabel('bhp,W')\n",
      "ax.grid()\n",
      "plt.show()\n",
      "\n",
      "\n",
      "#Curve Fitted Data Yields\n",
      "CQ_star=0.0112\n",
      "CH_star=0.133\n",
      "CP_star=0.00184\n",
      "npump_star=0.812\n",
      "\n",
      "#Part(b)\n",
      "Db=((V_B_dot**2*CH_star)/(CQ_star**2*g*H_B))**0.25 #Design Diameter of pump B in m\n",
      "\n",
      "w_B=V_B_dot/(CQ_star*Db**3) #Angular speed at B in rad/s\n",
      "\n",
      "bhp_B=CP_star*rho_B*w_B**3*Db**5 #Required brake horse power in W\n",
      "\n",
      "\n",
      "#Result\n",
      "print \"The required diameter of Pump is\",round(Db,3),\"m\"\n",
      "print \"The required rotational speed is\",round(w_B),\"rad/s\"\n",
      "print \"The required Brake Horse Power is\",round(bhp_B),\"W\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEWCAYAAADcsGj7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmczdX7wN+PsRRiLEW2JokQ0SKijOxtilRoUVokWr4k\n6qfyTaQ9UmklX5H6Wiq7ciWR5YvsUhSRJcLIMmae3x/nM7nGLHdm7ufe+/nMeb9e9zX3nM85n8/z\nzJ05zz3Pec5zRFWxWCwWiyUWKRBtASwWi8ViyQxrpCwWi8USs1gjZbFYLJaYxRopi8ViscQs1khZ\nLBaLJWaxRspisVgsMYunjZSIfCgiO0VkVQhtXxWR5c5rg4jsi4SMFovFYsk94uV9UiJyJZAEfKyq\ndXLQrydQT1XvdU04i8ViseQZT8+kVHU+cNKMSETOE5HpIrJURL4VkRoZdO0MjIuIkBaLxWLJNQWj\nLYALvAs8oKqbRORy4C2gedpFETkHSAC+iY54FovFYgkVXxkpESkONAI+E5G06sLpmt0GfKZe9nNa\nLBZLPsFXRgrjvvxLVetn0eZWoEeE5LFYLBZLHnB1TSqU6DsRGSYiP4nIShGpH1TfRkTWO9eeCOV5\nqnoA2CwiNzv3EBGpG3TPC4BSqroo91pZLBaLvxCRyiIyV0TWiMhqEXnYqS8tIrNFZKOIzBKR+KA+\n/Z3xeb2ItHJLNrcDJz4C2mR2UUSuAaqp6vnA/cDbTn0c8KbTtxbQSURqZtB/HPA9UENEtorI3UAX\noJuIrABWAzcEdbkVGzBhsVgs6UkGHlPV2kBD4CFnzO0HzFbV6sDXThkRqYUZT2thxum3RMQVe+Kq\nu09V54tIQhZNbgBGO21/EJF4ESkPnAtsUtUtACIyHmgHrEt3/06Z3LdtJvIMzIn8FovFkh9Q1T+A\nP5z3SSKyDqiIGaObOs1GAwGMoWoHjFPVZGCLiGwCGgBh91JFOwS9IrA1qLzNqauQSb3FYrFYXMSZ\nWNQHfgDKqepO59JOoJzzvgJmXE7DtTE62kYKQLJvYrFYLBa3cSKk/ws8oqoHg685EdFZRUW7EjEd\n7ei+34HKQeVKGItcKF19ZU622gCIiA0jt1gsllygqidNEESkEMZAjVHVyU71ThEpr6p/iMjZwC6n\nPqOx+3c35Iz2TOoL4E4AEWmICR/fCSwFzheRBBEpjFmg+yKjG6iqb1/PPPNM1GWw+ln98ptu+UG/\n9IjZWPoBsFZVX083Rt/lvL8LmBxUf5uIFBaRc4HzgcV5tAcZ4upMyom+awqUFZGtwDOYWRKqOlJV\np4nINc6i2yHgbufacSe/3kwgDvhAVddl+BAfs2XLlmiL4CpWP+/iZ93A//plQGPgduBHEVnu1PUH\nXgAmiEg3YAtwC4CqrhWRCcBa4DjQQzOyfmHA7ei+zKLvgtv0zKR+OjA97EJZLBaL5SRU9Tsy96y1\nyKTPYGCwa0I5RNvdZ8mCrl27RlsEV7H6eRc/6wb+189LeP2oDrdmmBaLxeJbRARNFzgRq9iZVAwT\nCASiLYKrWP28i591A//r5yWskbJYLBZLzGLdfRaLxZLPsO4+i8VisVjCgDVSMYzf/eJWP+/iZ93A\n//p5CWukLBaLJR/htRUSuyZlsVgs+Yi+feGll+yalMVisVhijBEjYMqUaEuRM6yRimH87he3+nkX\nP+sG/tTviy/g+edhuseSzUX7qA6LxWKxuMzixdCtG0ybBlWrRluanGHXpCwWi8XH/PwzNGkC774L\n119v6uw+KUueSEqC9eth2ynHPFosFkvo7NkDbdvCgAEnDJTXsDOpCJOUZIzP1q3mZ/D7tJ9Hj0LF\nirB79zGKFy9Mo0b887r4YihSJNpahIdAIEBiYmK0xXANP+vnZ93AH/odPgwtWphZ1NChJ1/z0kzK\nrkmFkfQGKCNDdPQoVKpkXpUrm58XXww33HCiXLo0iMDcud9TuXIiCxfCwoUwZgxs3Ah163KS4apU\nKdqaWyyWWCI1Fe68E6pUgSFDoi1N3nB1JiUibYDXMafrvq+qQ9NdLwV8CFQFjgD3qOoa59oW4ACQ\nAiSraoMM7h+xmVRuDVD6n2kGKC9yLF3KP4Zr4UIzs/LrbMtiseSc3r3NODFrVsZjQfqZlIh8CFwL\n7FLVOk5dA+BNzGnqaafvLnGu9QfuwYzPD6vqLLd0cc1IiUgcsAFzquPvwBKgU/Ax8CLyEnBAVZ8T\nkRrACFVt4VzbDFyiqnuzeEZYjFRmBijYEEXCAOUGVbMwGmy07GzLYsm/DBsGb78NCxaYMSkjMjBS\nVwJJwMdBRioADFHVmSLSFuirqs1EpBbwCXAZUBGYA1RX1VQ39HHT3dcA2KSqWwBEZDzQDlgX1KYm\n8AKAqm4QkQQROVNVdzvX8zzk59YAZeaCiySh+MVFoFo187rjDlMXPNsaMwZ69IjN2ZYf/P5Z4Wf9\n/KwbeFe/SZPM+lNWBiojVHW+iCSkq94BlHTex2MmG2DG8XGqmgxsEZFNmPF+UR5EzxQ3jVRFYGtQ\neRtwebo2K4H2wHfO1PIcoBKwG1BgjoikACNV9b2MHrJ+vTcNkJsULw6JieYFp8627NqWxeI/Fi2C\n+++HGTMgISEst+yHGZtfxkSCN3LqK3CyQdqGGe9dwU0jFYof7gXgDRFZDqwClmN8nABNVHW7iJwJ\nzBaR9ao6P/0NLr/8D0qXPkzJkvs588xj1KkTz0MPVadyZdiy5TtKlDhOs2aJwIld5GnfkAKBAPv2\nnVxOfz2a5bS6cNyvWjXYti1A5crw1luJJCXB+++vYM2aEowZU5UePQCOUrv2fm644SwaNYKDB+dR\nuLB6Qr9YLPtZv8TExJiSJ7/rt2kTXHNNgL594ZJLTr0eCAQYNWoUAAmhW7APMOtNk0SkIyZ+oGUm\nbV0LDnBzTaoh8KyqtnHK/YHU9MET6fpsBuqoalK6+meAJFV9JV2950LQYxW7tmWxeJPdu+GKK+Dx\nx81MKhQyCkF33H1fBq1JHVDVEs57Af5S1ZIi0g9AVV9wrs0AnlHVH8Kk0km4uZl3KXC+s85UGLgV\n+CK4gYiUdK4hIvcB81Q1SUSKisgZTn0xoBVmppWvSPsmFAnS1rbuuAPeeguWL4edO2HwYChb1rgI\n69c3RqpjR3j1VWPIjh7N/TMjqV808LN+ftYNvKPf4cNm6aJjx9ANVA7YJCJNnfdXAxud918At4lI\nYRE5FzgfWBz2pzu45u5T1eMi0hOYiQlB/0BV14nIA871kUAtYJSIKLAa6OZ0LwdMMsabgsBYN0Mc\nLRlTvDg0a2ZeYNe2LJZYIiUFunQxufiefz5v9xKRcUBToKyIbAWeBu4HRohIEeCwU0ZV14rIBGAt\nJ0LTvefuiwTW3Rd9kpJgyRJjtBYtsvu2LJZI8eijsHKlCZTI6f+XlzJOWCNlCSt2bcticZ/XXoP3\n3zeh5vHxOe9vjVSE8LuRCo4M8zKZzbbKldtHnTqlMtwcHR/v/W0Bfvn8MsLPukFs6/f552YW9f33\nJu1RbvCSkbK5+yyuk9Ha1i+/wMSJv1G6dCm2bTNGbNKkE/vcjh8/YbQyy/LhB0NmseSE7783m/Nn\nzsy9gfIadiZliUkOHMg8S3xGhiwzg2YNmcUvbNwIV10Fo0ZBmzZ5u5eXZlLWSFk8S24NWXqDZg2Z\nJdbZtcus5fbvD/fem/f7WSMVIfxupGLZLx4OIqFfKIYsJSX75MG5MWR+/vz8rBvEln6HDsHVV0Or\nVvDcc+G5p5eMlF2TsviaEiWgVi3zyoyMDNnixTBxovuGzGLJipQU6NwZatSAf/872tJEBzuTslhC\nIKczsoQEs9EyMdEaLkvuUIVevUwS7WnToHDh8N3bSzMpa6QsljARbMjWrYN33oHTToN//QtuvTW8\ng4zF/7z8MoweDd99ByVLZt8+J3jJSLmZu8+SR7ySPyy3+E2/NNdiq1bwyCMwYkSAwYPh44/NzGrw\nYPjzz2hLGR789tmlJ9r6TZgAb7xhZlDhNlBewxopi8UlChSAtm1h9myTumbTJpPEt0cPE05ssWTE\n/PnQsyd89ZVZ78zvWHefxRJB/vjDZJl/5x24/HLjCrTrVpY01q+Hpk1N8uZWrdx7jpfcfdZIWSxR\n4PBh+M9/zJEndt3KAuZonEaN4OmnoWtXd5/lJSNl3X0xTLT94m6Tn/U7/XS47z5YswZPrlvl58/O\nDQ4dguuug7vuct9AeQ1rpCyWKGLXrSzHj8Ntt8GFF5pZlOVkrLvPYokx7LpV/kEVHnrIfDmZOhUK\nFYrMc627z0FE2ojIehH5SUSeyOB6KRGZJCIrReQHEakdal+Lxa+UL2+yC/z6qzkavEcPc3DkmDFw\n7Fi0pTPuyAkT4MiRaEvifV580ZwJ9fnnkTNQGSEiH4rIThFZla6+l4isE5HVIjI0qL6/MzavFxEX\nQzwAVXXlhTkyfhOQABQCVgA107V5CRjgvK8BzAm1r9NO/czcuXOjLYKrWP1CIyVFddo01RYtVM8+\nW/X551X37AnLrXPE0aOqr76qWrasas2ac7VKFdVRo1SPH4+8LG4Tib/NTz5RrVxZdds21x91Cs7Y\nGTyWXgnUB1YF1TUDZgOFnPKZzs9azphcyBmjNwEFNA/2IquXmzOpBsAmVd2iqsnAeKBdujY1gbmO\ntdkAJIjIWSH2tVjyBdFet1KFKVPMmsns2TBvnnFHfvIJvPsu1K9vNp1az3vozJtnNnxPnQoVK0Zb\nGlDV+cC+dNUPAkOcMRhV3e3UtwPGqWqyqm7BGKkGbsnmppGqCGwNKm9z6oJZCbQHEJEGwDlApRD7\n+p5YycLsFla/nFO3Lnz4oUm7VLYsNGkC118Pc+e6YyRWroQWLeDJJ2HYMGOMatUyujVubFL2/Pvf\n0Lu3ydS9ZEn4ZYgGbv5trl0Lt9wC48ZBnTquPSYcnA9cJSKLRCQgIpc69RUwY3Iaro7PbmZBD+Vf\n5gXgDRFZDqwClgMpIfYFoGvXriQkJAAQHx9PvXr1/vkDSwsjtWVb9lu5fHm4+uoAjRsX4LffruKh\nhyA5+SAdO27j2WdrUrhw3u7/xx/QrVuA77+H559P5P774bvvAgQCp7a/8cZErrsO+vUL0LYtNG+e\nyPPPw7ZtsfP7ipXyn39Cnz6JvPQSxMVl/Pt0oxwIBBg1ahTAP+NlCBQESqlqQxG5DJgAVM2krXvz\naLf8iEBDYEZQuT/wRDZ9NgPFQ+2LXZPyNFa/8JG2btWypWqFCrlftzp8WHXwYNUyZVR791bdty/j\ndpnplpSkOmiQ6d+zp+rOnTmXIRZw47M7eFD14otVn3su7LfOMaRbkzJVJHDymtR0oGlQeRNQFugH\n9AuqnwFcnv5+4Xq56e5bCpwvIgkiUhi4FfgiuIGIlHSuISL3AfNUNSmUvhaL5QQFnHWrWbNyt26l\nCp9+ChdcYM7SWrTIZOGOj8+ZHMWKwVNPmfQ+cXHGNfjvf0NSUu708gvHjxsXX/365vfjESYDVwOI\nSHWgsKruwYzFt4lIYRE5F+MWXOyaFG5ZP8fCtgU2YCxwf6fuAeAB530j5/p64HOgZFZ9M7h/3r5O\nWCw+ZscO1aefVj3rLNXrrlP95hvV1NRT2y1erNq4sWq9eqZNOPn5Z9VOnUxU4ltvqR47Ft77e4HU\nVNX77lNt3Tp29OfU6L5xwHbgKCYe4G5M9N4YzFLMMiAxqP2Tzti8HmitYbAXmb3sZl6Lxeek5Ql8\n7TUoUuREnsBdu6B/f/j6axg0yKTkiYtzR4Zly+CJJ8zhkIMHQ/v2+Wdz8uDB8Nln8O23cMYZ0ZbG\nYDfzWsJC2sKnX7H6RYa0PIGrV5sBc9QoExlYvbr5uWED3HNPzgxUTnW75BITvj58uDGIV1xhjqSI\nVcL12f3nPyZMf+rU2DFQXsMaKYslH7F7tzFKjRubhKajRpkZTiT2W4mY4yeWLTOpgO64w4TPr1nj\n/rOjwTffmND8qVOhQoVoS+NdrLvPYskHfPcdPPaYmS299po5EgJMnsC33zZ5Ahs0iGyewKNHzabg\nIUOMsRo4ECpVcv+5kWD1arNv7NNPoVmzaEtzKtbdZ7FYYoLNm6FjR+jcGR59FL7//oSBApMncOBA\n2LLF5Al86KHI5QksUsQYzo0b4ayz4KKLzBrZX3+5+1y32b4drr3WfBmIRQPlNayRimFiZU3DLax+\n7nHgAPTrB5dearJUrF8PXbqYUPWMSL9uNWYMnHuumeXs3Xtq+3DqFh9vnrNypXFHVq9uDoM8ejRs\nj8gxudXv4EFjoLp3N79vS96xRspi8REpKWahvkYNc9LrqlUwYAAULRpa//T7rX76KXJ5AitVgvff\nNymeAgGjw5gxkJrq7nPDRXKymbU2aGC+IFjCg12Tslh8wtdfG/dZqVLG1XTxxeG5b/C61eWXm2dE\nYt1q/nzo29eE0A8daoIuYjVsXRXuvdf8rqZMgYJuJpwLA15ak7JGymLxOBs3Qp8+JkruxRfd24MU\nvN8qPt7MtEqUCP9zglGFSZPMWlXlysZYXXKJu8/MDc89B5Mnm+zmxYtHW5rs8ZKRsu6+GMau2Xgb\nt/Xbu9cEQ1xxBVx5pcmu3aGDe7ON4HWrM8/8ndtvd98VJ2KM7urVcPPNJgqwc2f45Rd3n5uTz270\naJOZfupUbxgor2GNlMXiMZKTzabYCy4wwQVr18Ljj5touUhQoAD06rWJAwfMelckKFTIBCNs3Ag1\na5p1n0ceMYEW0WTOHOOSnDbNREpawo9191ksHkHVDIZ9+hjX1yuvRPc8ot27jbEYMgRuuy2yz961\ny7jYxo0za2SPPmqS20aSH380Z219/jlcdVVkn51XvOTus0bKYvEAq1ebjba//WaM0zXXxEYQQdpA\nPWNG+AI1csKmTSar+HffwTPPmPROkQha2LbNuFlffDHyBjoceMlIWXdfDGPXbLxNOPTbvRsefNBk\nL7j+ehNSfu210TdQabrVrWui/m66yYS8R5pq1UxWh8mTYfx4M7OcPDnvpxRn9dnt32++JPTs6U0D\n5TWskbJYYpCjR+Gll8x5TKedZjbj9upl1mZijfbtzQymffvobcC97DITgv/qq/D009CkCSxYEP7n\nJCebAI4mTcw6oMV9rLvPYokhVGHiRLMYX7u2MVQ1akRbquxJTTWH+pUsaTbkRnOml5ICY8eaoI76\n9c2aWc2aeb+vKtx9t4mqnDgx9vdCZYV191kslhyzbJnZJDtwIIwcCV984Q0DBSbib9QoWLrURB5G\nk7g4uPNOk+29SRMT1HD//SanXl4YONDsRRs3ztsGymu4aqREpI2IrBeRn0TkiQyulxWRGSKyQkRW\ni0jXoGtbRORHEVkuIu4dTRzD2DUbbxOqftu3m2/o110Ht98Oy5ebYIRYJiPdihc32RaGDDGh2dHm\ntNNMJOTGjWbzcZ06Jshi//7s+6bX76OP4OOP4auvIh9FGAlE5EMR2SkiqzK41ltEUkWkdFBdf2dc\nXy8irdyUzTUjJSJxwJtAG6AW0ElE0k+6ewLLVbUekAi8IiJp31EUc1xxfVVt4JacFku0+PtvE0Zd\npw6UK2e++d93n3un40aChAQTwNCli4m8iwVKlTJReMuXmy8E1avD66+Hvn42a5bJeDF9uvmcfMpH\nmLH6JESkMtAS+DWorhZwK2ZcbwO8JSLuTXhCPWceOAsYBLwKnB9C+0bAjKByP6BfujYPACOc91WB\njUHXNgNlsnmGWixeIzVVdexY1SpVVDt2VP3ll2hLFH7eflu1Vi3V/fujLcmp/Pij6jXXqJ57rvkc\nUlIyb7t8ueqZZ6rOnx85+SKBM3amH08TgFXp6j4D6jrjcWmnrj/wRFCbGUDD9PcL1ysn1u8VYBYw\nCfgkhPYVga1B5W1OXTDvAbVFZDuwEngk6JoCc0RkqYjclwM5LZaYZeFCc57Tq6+aPHgTJpgjMfxG\n9+7QtCkRSZ2UU+rUMSmMPvzQzKguuyxj9+TWrSbsf8QIs7aV3xCRdsA2Vf0x3aUKmPE8jYzG9rCR\n6fKfiMwEnlfVb52qwhhrqkAoCVhCCbt7Elihqokich4wW0QuUtWDQGNV3SEiZzr161V1fvobdO3a\nlYSEBADi4+OpV68eiYmJwAm/slfLr7/+uq/0yc/6/for3H13gFWr4JVXErn9dvj22wCBQOzIm5Ny\n8JpNZu3bt59Hnz4XMWBAPM8/H1vyGwIMHQp79iTy4IMQHx/g/vvhvvsS+eqrAL16mXXCjh1jQ968\nfl6jRo0C+Ge8zAoRKYoZn1sGV2fRxb0w68ymWEA88DIwHjgPOB/4DzARaJLdFA1oyMnuvpOmiE7d\nNIwxSit/DVyawb2eAXpnUJ+3OW+MM3fu3GiL4Cr5Qb+DB1Wfekq1dGnVZ55RTUqKtlThIdTPbtcu\n1YQE1XHj3JUnrxw7pvrmm6rlyql26aJar95c7dnTuGb9CNm4+4A6wE7MxGQzkAxsAcqRbukG4+67\nPP39wvXKdp+UM8MZBGwHBqnqvlCMnxMAsQFo7vRdDHRS1XVBbV4F9qvqQBEpByzD+D+PAHGqelBE\nimHcjANVdVa6Z2h28lss0SAlxWTHHjDAZIsYMsQc6pcfSUudNH16bB6zEczBgybt1Pbt5gwtLwex\nZEVG+6REJAH4UlVPyQgpIpuBS1R1rxM48QnQAOPmmwNUc2swzsrdVw3oDhwD+mBmU+NFZCom2CEl\nqxur6nER6QnMBOKAD1R1nYg84FwfCQwGPhKRlZhIw77OL6EqMFHMjsCCwNj0BspiiVV27oQbbjB7\naSZNMklY8zPBqZMWL47tbOFnnAHPPhttKSKPiIwDmgJlRGQr8LSqfhTU5B8DpKprRWQCsBY4DvRw\nc7aQ6UxKRJYAjwLFMG665mKsxp3AXap6tVtChYrfZ1KBQCDIf+4//Kjf779D8+Ymp1vTpgGaNUuM\ntkiukJvPbuBAE879zTeRO1Ykt/jxbzMYv2ScSAuU2AwUhX8WgEYD10VANovFU/z6q4lou+ce8208\n2klgY40BA+Dss6FHj7wngLXkH7KaSTUG/oVZMBuiqisjKVgo+H0mZfEOmzaZGVSfPiYRrCVjkpKg\ncWPo1g0efjja0uRfvDSTsglmLZY8snYttGplzjO6z+7oy5YtW8xesTFjYj/9k1/xkpGyCWZjmOC9\nKH7ED/qtXGlmUC+8cKqB8oN+mZEX3WIxdVJ6/PzZeQ1rpCyWXLJkiZlBDRtmMitYQqdpUxNI0a4d\nHDgQbWkssYx191ksuWDBAhNS/cEHJnWOJXc8+KCJiJw82Rz3YYkMXnL3hbKZtwZmn1QCJ/ZVqQ1B\nt+RXvvkGbr3VHKzXytVDCvzPsWPmd9i4MTz/fLSlyT94yUiF8t3lM+B/wP8Bjwe9LC7jd7+4F/Wb\nMcPsgfr88+wNlBf1C5Vw6Va4MHz2GXzyiVmnihX8/Nl5jVDOl0xW1bddl8RiiXEmTzYnvE6ZYqLT\nLOHhzDPN77RFCzj//NhPnWSJLKG4+54FdmMSy/5zTJiq7nVVshCw7j5LpPj0U3jkEXPEgx1E3WHi\nRHj00dhPneQHvOTuC8VIbSGDNOyqGvVTcKyRskSC0aPNyawzZ5qziCzu4aXUSV7GS0Yq2zUpVU1Q\n1XPTvyIhXH7H735xL+j3zjvwf/9nBs2cGigv6Jdb3NItVlIn+fmz8xpZZUFvrqpfi0gHMp5JTXRV\nMoslyrz+OrzxBgQCcN550ZYmf1CgAIwaZaL9hg+3qZMsWefuG6iqz4jIKDI2Une7LFu2WHefxS2G\nDDHHi3/9NVSpEm1p8h82dZK7eMndZzfzWixBqJocfJ9/DnPmQIUK0ZYo/zJvHtxyi9k4Xa1atKXx\nF14yUq7u8RaRNiKyXkR+EpEnMrheVkRmiMgKEVktIl1D7Zsf8LtfPNb0U4W+fU04dCCQdwMVa/qF\nk0jolpY66YYbIp86yc+fXUaIyIcislNEVgXVvSQi60RkpYhMFJGSQdf6O2PzehFxdUu7a0ZKROKA\nN4E2QC2gk4jUTNesJ7BcVesBicArIlIwxL4WS9hITYWePY1xmjsXzjor2hJZALp3N8aqSxdIyfIs\ncEse+Qgz3gYzC6itqhcBG4H+AM7x8bdixuY2wFsi4potcXMm1QDYpKpbVDUZGA+0S9dmB1DCeV8C\n+FNVj4fY1/f4+WRQiB39UlJMBvOVK42Lr3Tp8Nw3VvRzg0jq9sYbcPCgifyLFH7+7DJCVecD+9LV\nzVbVVKf4A1DJed8OGKeqyaq6BdiEGbNdIZSME2kHICZwcu6+j7PpVhHYGlTeBlyers17wDcish04\nA7glB30tljxz/DjcdRfs2GFSHhUvHm2JLOlJS53UoAHUrWvSUlkizj3AOOd9BWBR0LVtmDH7FETk\nMWAB8D9nApJjsp1Jich/gJeAxsClzuuyEO4dSkTDk8AKVa0A1ANGiMgZIfTLF/jdLx5t/Y4dM4li\n9+41mSTCbaCirZ+bRFq3tNRJDz8My5a5/zw/f3Y5RUSeAo6p6idZNMtsvK8EvA7sFpFvRWSwiFwn\nIiH7K0KZSV0C1MpFGN3vQOWgcmWMxQ3mCuB5AFX9WUQ2AzWcdtn1BaBr164kJCQAEB8fT7169f6Z\nqqf9oXm1vGLFipiSx0/6HTkCzZoFiIuDr79OpEgRf+nnx/LevQF69izLTTddyOLFsH59bMkXy+VA\nIMCoUaMA/hkvQ8EJZrsGaB5UnX5sr+TUnYKq9nbuUwQzwWmEmZW9JyJ/qWq2sQahpEX6DHhEVbdn\nd7N0/QoCGzDKbQcWA51UdV1Qm1eB/ao6UETKAcuAusCB7Po6/W0IuiXHHDoEN94IZcqYfTiFCkVb\nIktOePZZmD3bpk7KCxmFoItIAvClqtZxym2AV4CmqronqF0t4BPMOlRFYA5QLavBWETiMQbqCucV\nD/wYyn7bUIxUAOOKW8yJBLOqqjdke3ORtpipXhzwgaoOEZEHnBuMFJGymKiSKhjX45C0KWVGfTO4\nvzVSlhxx4ABcdx1UrWoOLIyLi7ZElpySmgodO0J8PLz/PogndvvEFumNlIiMA5oCZYGdwDOYaL7C\nQFoy8YWQ32idAAAgAElEQVSq2sNp/yRmRnQcM4mZmclz3sNEAR7E2JCFwCJV3ZdR+wzvEYKRSsyg\nWlV1XqgPcQu/G6lAIPDP1N2PRFq/ffugbVuoXx9GjHD/JFg/f37R1i0pyaRO6tbNndRJ0dbPbSK1\nmVdEZgJlgNUYA7UQWJWTgTvbNSlVDeRWQIslVtizB1q2hMREePVV++3b6xQvfuJcr1q1bOqkWEVV\nWzt7qGpj3H3/AuqIyJ+YGdXT2d3DpkWy+J4//jCDWLt2MGiQNVB+wqZOyh3RSIskIpUx61GNgeuA\nMqpaMute1khZfM7WrdC8Odx5pzlyw+I/3nkHhg2DRYugRIns21si6u57BGOYGmHWr77H7Jv6Hlit\nqtnmEXHZK2/JC2khpH7Fbf02bzYpdR54IDoGys+fXyzp5kbqpFjSz+MkABOAhqpaVVVvV9W3VXVl\nKAYKsj5PalVm1zCBE3VzJqvFEjk2bjQuvieegIceirY0Frd54w1o1cqkTho8ONrSWNJQ1cfyeo+s\nzpNKcN72cH6OAQTo4jw86pnJrbvPkhFr1pgB67nn4J57oi2NJVLs3m1SJw0eDJ06RVua2CbaR3WI\nyHrn7Zuq+maWbUMIQV/hZCkPrluuqvXzJmbesUbKkp7ly+Gaa+CVV6Bz52hLY4k0K1eaGfSMGXDJ\nJdGWJnaJtpFyZCgLXK6qU7NqF8qalIhIk6BCY8yMyuIyfveLh1u/H36ANm3gzTdjw0D5+fOLVd0u\nusgEUtx0k4nqzC2xqp+XEZGzRaSdiFwvIuVVdU92BgpCM1L3YM4L+VVEfgXecuoslphh/ny4/npz\n5HuHDtGWxhJNOnQwbt727eHo0ezbW9xHRO7FHPfRHrgZ+EFEuoXUN1R3WdqpjKq6P5dyhh3r7rOA\nOQOqc2f45BO7qdNisKmTsibS7j4R2Qg0UtU/nXIZTJql6tn1zTbjhIicBnTAOU9KzKetqvrvvAht\nsYSDqVPh7rvhv/+FK6+MtjSWWKFAARg92qROGj7cndRJlhyxB0gKKic5ddkSirtvCnADkOzcOAk4\nlEMBLbnA737xvOo3caJx63z5ZWwaKD9/fl7QLS110pAhZradE7ygn8f4GVgkIs+KyLOYQxN/EpHe\nIvKvrDqGcp5URVVtHQYhLZaw8ckn0Lu3ieKqH/U4U0uskpAA48fb1EkxwM/OK219ZorzPtujRkMJ\nQX8XE8v+Yx6FDDt2TSp/8uGHZtPmrFlQu3a0pbF4AZs66WRiIQQ9VEIxUuuAasBmTj5PKuoZJ6yR\nyn+MGAFDhxr3TfVsl1wtlhM8+CBs2waTJ9tzxKIQOFED6IMT2+BUq6penV3fUNak2gLnA62A651X\ntgceWvKO3/3iOdXvlVfMa948bxgoP39+XtTtjTfMoZcDBmTf1ov6xTifAf8D/g94POiVLdkaKVXd\noqpbgL+B1KBXtohIGxFZLyI/icgpaZREpI+ILHdeq0TkuHPMMCKyRUR+dK4tDuV5Fv8yaBCMHGkM\n1LnnRlsaixcpXBg+/xzGjTMvywlE5EMR2Rmcs1VESovIbBHZKCKz0sZm51p/Z1xfLyKtQnhEspNY\n9gdVXeq8loUkWwjuvhsw59xXAHYB5wDrVDXL1QARiQM2AC2A34ElQCdVXZdJ++uAR1W1hVPeDFyi\nqnszau+0se4+n6NqMphPmWJcfOXLR1sii9exqZMyPD7+Skzk9seqWsepexHYo6ovOpOMUqraT0Rq\nAZ8AlwEVgTlAdVU9ZfIiIqUxGYp6AbuBiZxYNiKr8T2NUNx9gzBngWxU1XOB5pidw9nRANjkzMSS\ngfFAuyzadwbSf7/xxMKexR1U4V//gmnTIBCwBsoSHsKVOslPqOp8YF+66huA0c770cCNzvt2wDhV\nTXa8bJsw431G/A9YCtyFWZP6HlgW9MqWUIxUsqruAQqISJyqzgUuDaFfRWBrUHmbU3cKIlIUaA38\nN6hagTkislRE7gvheb7D737xrPRLTYUePeD77+Gbb6Bs2cjJFS78/Pl5XbfsUid5Xb8wUU5Vdzrv\ndwLlnPcVMON5GpmO7aqa4ExuagEjgJXAcmC4U5ctoRipfSJyBjAfGCsiwzh553Bm5MQPdz3wnar+\nFVTX2Mm03hZ4yJmOWvIBKSnQrRusXg2zZ0OpUtGWyOJHnn4azj7bRP3ZVYOscdZVsvotZfcb/Bio\nCbwBvIkxUB+H8uxQNvO2A44Aj2HOkioBDAyh3+9A5aByZU62vsHcRjpXn6rucH7uFpFJmOnk/PQd\nu3btSkJCAgDx8fHUq1ePxMRE4MS3Ia+W0+piRZ5I6Hf8OLz/fiJ79sCTTwb43/9iR177+Z0oJyYm\nxpQ8uSl/+22Ae++No1+/Kxk2DC66yF/6BZcDgQCjRo0C+Ge8DIGdTrbyP0TkbExMApw6tldy6rKi\ntqoGz5y+EZG1oQgRcoLZnCIiBTGBE82B7cBiMgiccBLX/gJUUtXDTl1RIE5VD4pIMWAWMFBVZ6Xr\nawMnfMTRo3DbbXDsmMnFd9pp0ZbIkh/YsgUaNYKPP4aWLaMtTWTIaJ+Uc9Dtl+kCJ/5U1aEi0g+I\nTxc40YATgRPVshqMReQ/wAhVXeiUGwIPqeod2ckairsvV6jqcaAnMBNYC3yqqutE5AEReSCo6Y3A\nzDQD5VAOmC8iKzBBGl+lN1D5gbRvQn4lWL/Dh+HGG01i0EmT/GGg/Pz5+Um3tNRJt98OmzaZOj/p\nFwoiMg4T1FBDRLaKyN3AC0BLJ4P51U4ZVV0LTMCM69OBHpkZKGdr0SrgEmCBc+TTFudZocQ2hOTu\nyzWqOh2jRHDdyHTl0ZyIIEmr2wycdBqwxb8kJcENN5j1gdGjoaCrf5UWy6k0bQrPPmv+DhctirY0\nkUdVO2VyKcPDb1R1MDA4hFtfn9VjQ+jvnrsvElh3n/fZvx+uvRZq1IB337XpaizRJb+kTvJS7r5s\n3X3OUb/LRWSfiBx0XgciIZzF3+zda9YALroI3nvP34OCxRukpU7q29dG/MUKoaxJvY7ZiFVGVc9w\nXjaPcATws1981y647LIAV10Fb75p1qL8hp8/P7/qVriwCdqZOvUA3bub7RCW6BLK0LANWJNRyguL\nJaekppqzoC69FK64Al56yR7tbYktypaFV19dyS+/mCPojxyJtkT5m1By9zUE/g3MBY451aqqr7os\nW7bYNSlvsWCBSXOUmgqvvQZNmkRbIoslc44ehbvuMqmTpkyBkiWjLVH48NWaFPAcJsPEaZhTFIsD\nZ7gplMVfbN4Mt95q9kD16gU//GANlCX2KVLEzPrr1DHRfzbPX3QIxUidrartVfUZVR2Y9nJdMovn\n/f7798MTTxjX3oUXwoYNZi9K2vqT1/XLDj/r52fd4IR+BQqYE307dIDGjeHnn6MrV34kFCM1TURa\nuy6JxTccP26yTNeoAbt3w6pV5qC5okWjLZnFknNEzN9v375w5ZWwfHm0JcpfhLImlQQUxaxHJTvV\nGgsRfnZNKvaYORN694Yzz4RXX4X69aMtkcUSPiZOhO7d4dNPoVmzaEuTe7y0JmU381rCwtq1xjht\n2gQvv2x27tuoPYsfmTvXrLG+/bZxA3oRLxmpUDbz3pTu2OB4Ebkxqz6W8OAFv//u3ebcp6ZNoXVr\nWLMG2rULzUB5Qb+84Gf9/KwbZK1fs2bGY9CrF4wcmWkzS5gIZU3q2eBznpz3z7omkcUTHD1q9jjV\nrAmFCsH69fDoo2YzpMXid+rXh/nzzf/Ac8/Z7BRuEsqa1I+qWjdd3aq0dO7RxLr7Io+q2ZHft68J\nzX3xRRMgYbHkR/74A9q2NZF/w4Z5J3OKl9x9oRipj4B9mKN/BXgIKKWqXV2XLhuskYosS5aYzbgH\nD8Irr0Dz5tGWyGKJPvv3m2NmypUzWfyLFIm2RNnjJSMVit3vhYnq+xQYjzml9yE3hbIYYsXvv3Ur\n3HGHWWu6+25Ytiw8BipW9HMLP+vnZ90gZ/qVLAnTp0NyMlx3nfkSZwkf2RopVU1S1SdU9VLn1V9V\nD0VCOEt0SUqCp5+GevXgnHPMZtx77rHZyi2W9Jx2GkyYAFWrwtVXm4AiS3jIcQi6iAwG9gPvq+qf\n2bRtg8miHue0H5rueh+gi1MsCNQEyqrqX9n1dfpbd58LpKSYo7T/7/9MJNPgwVClSrSlslhiH1Xz\nxe7TT2HWLHPqbyySyfHx/YHbgVRgFXA3UAzjRTsH2ALcEhxIFxFZc2GkbgLOAy7K6nx6EYkDNmBO\ndvwdWAJ0UtV1mbS/DnhUVVuE2tcaqfAzd65Zdypa1GzGvfzyaEtksXiP4cNh6FDjBqwT9RCzU0lv\npEQkAfgGqKmqR0XkU2AaUBvYo6ovisgTmHiEfpGUNcexKKo6SVVfzspAOTQANqnqFlVNxqxntcui\nfWdgXC77+pJI+v03bjSLv/fcA08+Cd99576BsusasY+qcuT4Efb8vYdf//qVtbvXsvj3xYz8ciQp\nqf49bCmvn12vXmZTe4sW5n/JAxzAxB4UFZGCmCxD24EbgNFOm9FAxPfIFszsgogMDyoqJrLvn7Kq\nPpzNvSsCW4PK24AMhz0RKQq0BnrktK8lb+zda/Z5jBljwsrHjzf+dYu3SElN4VDyIQ4dO0TSsaRT\n3icdS+LQsUMnvf+nXTbXCxYoSPHCxSlWqBjFChejeOHi7P5rNwM3DqRDzQ50rN2RxpUbE1fALlYG\nc9ttUKYMtG8P779vsrDEKqq6V0ReAX4DDgMzVXW2iJRT1Z1Os51AuUjLlqmRApZxwjgNBJ7mhKEK\nxceWEz/c9cB3Qb7OkPt27dqVBMfxGx8fT7169UhMTAROfBvyajmtzo37JyfDY48F+M9/oFOnRNau\nhbVrAyxa5A/9YqGcXr+5c+eSrMlc3PBiDh07xNwFczmccpgL6lxA0rEklqxcwuGUw1Q6txKHkg+x\ndtNaDqccptRZpUg6lsRvO37jSOoRChYtyKHkQ/x54E8OpxzmGMc4lnKMIgWKcHrc6ZQqVopihYuR\ncjiF0+NOp1K5ShQvXJz9u/dzWtxp1KxakzOLnUny7mRKxpXk0rqXUrxwcTau3shpcaeReEUixQoV\nY/ni5ZwedzrNmzXPUL8x08Ywb/c8ek3vxe5Du2lYoiFNz2xKzxt6ElcgLuq//7yUExMTw3K/QoVg\n6tREbrgBFixYT9u2f0RFn0AgwKhRowD+GS+DEZHzgEeBBEzMwWcicntwG1VVEYn4+kpIa1IislxV\nc5Qq1Dks8VlVbeOU+wOpmQRATAI+VdXxOelr16Ryjip8+SU8/jice67Z71S7drSl8j4pqSls/HMj\ny3YsY+n2pfy480f2Hdl3ygylUIFCFCtcjGKFzIwk/fvihU6tO+l6uhlN2vvTC56ORDFZ4sY/N/LZ\nms+YsHYCuw/ttjOsdGzYAG3amOS0fftGP69lBmtStwItVfVep3wH0BC4Gmimqn+IyNnAXFW9IKKy\numikCmKCH5pjfJuLyTj4oSTwC1BJVQ/nsK+vjVTwt/BwsGKFSQL7xx/GOLVpE7Zb54pw6xcp0huk\nZTuWseKPFZxV7CwuOfsSLq1wKfXK1+PXtb/S9IqmJxmZggWycl54h6w+Oz8YLDf+Nn//3fzPtWxp\n1qsKRDE7RQZG6iJgLHAZZi/sKMy4ew7wp6oOFZF+QHykAydc+49R1eMi0hOYiQkj/0BV14nIA871\ntNSMN2L8n4ez6+uWrH5nxw5zHs5XX8Ezz8B990FBf4yVrhOKQbq++vVcfPbFlDq91El9A1sDVC9T\nPUqSR4/qZarz1FVP8dRVT/1jsNJcgl40WOGiYkX49lu4/npzLP2HH5q8l7GAqq4UkY+BpZgQ9P8B\n72JOYZ8gIt1wQtAjLVumMynnHKm0i6djFtPSsOdJeYDDh82M6bXXoFs3eOopszvekjGhGKRLzr4k\nQ4NkyR4/zLDCwd9/m6M+jh+Hzz+HYsUiL4OX0iLZ86R8SGoqjBsH/fubMPKhQ81OeMsJrEGKLvnd\nYB0/bjwa69bB1KkmCjCSWCMVIfxupHLjF1+wwGzGTU01M6gmTdyRLRxEak0qO4OUZpTCbZC8uuYW\nCuHULRYNViQ+O1Xo188EMs2cCZUru/q4k/CSkbIrEz5h82Z44glYtMikMerc2TvHBoSTUAzSs02f\ntTOkGCK/rmGJGC9HuXLmqI8ZM6BWrWhLFXvYmZTH2b/fGKUPPjCHDqalNMoPhGKQLqlgXHalTy8d\nbXEtOSQWZ1huMWaM2RYyaRI0auT+87w0k7JGyqMcP252sT/7LFxzDQwaBBUqRFsq97AGKX8TbLB2\nHdrFzTVv9p3Bmj4d7rzTJHdu29bdZ1kjFSH8bqQy84vPnGn2O515pkkCWz9HO9hih8z084tBsmtS\n7hAJgxUt/RYuhJtuMvuobr89+/a5xUtGyq5JeYi1a41x+vlneOklkwss2jvX80ooBumZps/EvEGy\nRI7M1rD8MMNq1Ai++cZs+t21y7jv8zt2JuUBdu82m3A//9zsdXrwQShcONpS5Z4fd/7I+NXjmf/b\nfE/OkCyxiZ9cglu3QqtW5ovoCy+E/8uol2ZS1kjFMEePwrBh8OKL0KWLOUyttEfH7t/2/8Ynqz5h\n7Kqx7D+yn04XdqLleS2tQbK4gh8M1p9/wrXXmoi/d98Nb5YYa6QihJ+NVCAAnToFaNAgkZdeguoe\nzK6z9/BePlvzGWNXjWXN7jXcXPNmutTtQpMqTSggBXy9ZgN2TSpWyI3BihX9Dh2Cm2826ZPGjw9f\n5K6XjFQ+3EkT+yxYALfcYkLKp0zxloE6nHyYCWsm0G58O85941y+3vw1vRv1Zvu/tjPy+pFcdc5V\nFBD7Z2eJHGlrWCu7r2Re13mUL16eXtN7Uem1SvSa1otvf/02Zg9wLFYMvvgCSpQw7r99+6ItUeSx\nM6kYY8UKaN3a7Jto1Sra0oRGSmoK32z+hrGrxjJlwxQurXApXep0oX3N9pQoEvUUjxZLhnjJJZia\nCn36wOzZZtNvxYp5u5+XZlLWSMUQGzdCYiIMHw4dOkRbmqxRVZbtWMbYH8cyfs14Kp5RkS51unDb\nhbdx9hlnR1s8iyVHpDdYXS/qylNXPUXxwsWjLdo/qJr16XfeMYaqRo3c38tLRgpV9ezLiO8Pfv1V\ntUoV1Q8/PFE3d+7cqMmTGZv+3KQDAwO1xvAaWvWNqjrgmwG6bve6XN0rFvULJ37Wz8+6bdizQVu9\n3UqrvFZFJ6+bHG1xTuGDD1TLl1ddsiT393DGzqiP4aG87D6pGGDXLnMQ2mOPwd13R1uaU9l1aBef\nrv6UsavG8su+X7il9i181O4jGlZqGNXTYC0WN6hepjr9L+hP6jmpPDj1QUatHMWwNsOoXDKCGWCz\n4J57oGxZk2nmk0+gRYtoS+Qu1t0XZf76C5o1g3btTIqjWCHpWBKT109m7KqxLNy6kGurX0uXOl1o\nWbUlheJi5KQ2i8Vljhw/wtDvhjJ88XD+76r/o2eDnjFzuvL8+Sbyb9gwcz5VTvCSu89VIyUibYDX\nMafrvq+qQzNokwi8BhQC9qhqolO/BTgApADJqtogg76eNlKHDpkgiUsvNcdqRHtSkpySzKyfZzF2\n1Vim/jSVxpUb06VOF9pd0C6mfPMWS6TZsGcDD059kL+O/MXI60ZyWcXLoi0SAKtWmTx//fpBz56h\n98vISIlIPPA+UBtz4O3dwE/Ap5hj5LcAt6jqX+GRPkTc8iNiDNMmIAFjgFYANdO1iQfWAJWcctmg\na5uB0tk8I1QXbMxx5Ihqq1aqXbuqpqRk3CYSfv/U1FRd8NsC7fFVDz3zxTO14fsNdfgPw3Vn0k7X\nn+3ndQ1Vf+vnZ91UM9YvNTVVP17xsZZ7qZz2nNpT9x/ZH3nBMmDzZtXzz1cdMEA1NTW0PmSwJgWM\nBu5x3hcESgIvAn2duieAF9L3c/vl5oaVBsAmVd2iqsnAeKBdujadgf+q6jbH4uxJd90T09Gccvy4\nySBRvDi89150zn1av2c9A74ZQLXh1bhnyj2UL16ehd0WsrDbQno26MlZxc6KvFAWSwwjItxx0R2s\nfWgtR44fodaIWny+9vO0AT5qJCTAd9/BtGnQvTuk5GLLl4iUBK5U1Q8BVPW4qu4HbsAYL5yfN4ZH\n6hzI5tYvWERuBlqr6n1O+XbgclXtFdQmzc1XGzgDeENVxzjXfgH2Y9x9I1X1vQyeodH+A8kpqnDv\nvSY315dfQpEikXv29oPbGb96PGNXjWXHwR3cduFtdKnThYvPvtgGQFgsOWT+r/PpPrU7CfEJjLhm\nBAnxCVGV5+BBaN/ebPwdOxZOOy3ztundfSJSDxgJrAUuApYBjwLbVLWU00aAvWnlSOHmCmAo1qMQ\ncDHQHCgKLBSRRar6E9BEVbeLyJnAbBFZr6rz09+ga9euJCQkABAfH0+9evX+SWcSCAQAYqY8d26A\nt96C339PZPZsWLjQ/ecnHU9id5ndjF01lh+2/kCTMk0Y2moozRKaMf/b+RzceBCpIDHx+7FlW/ZS\nOWVzCq9f8DpLCi3h0ncvpUP5DnSs1JEWV7eIijzLlgV4/HHhgw+a0rYt9O49n+LFU0hMTCQQCDBq\n1CiAf8bLdBTEjMU9VXWJiLwO9AtuoKoqIpGfFbjlRwQaAjOCyv2BJ9K1eQJ4Nqj8PnBzBvd6Buid\nQX32ztcY4t//Vq1bV3Xv3tDa59bvfyT5iE5aN0lvnnCzlhhSQtuNa6cTVk/Qv4/9nav7uUV+XNfw\nC37WTTXn+m36c5O2HtNa67xVR7//7Xt3hAqR48dVH3pItV491R07Mm5DujUpoDywOajcBJgKrAPK\nO3VnA+s1RBsQrpebqyFLgfNFJEFECgO3Al+kazMFaCIicSJSFLgcWCsiRUXkDAARKQa0Ala5KKvr\nDBtmTtycNQtKuTBZTtVU5m2Zx/1f3k+FVyvw2qLXaFm1JZsf2czk2ybTsXZHTi90evgfbLFYOK/0\neUzvMp0nr3ySDhM60P2r7uw7HJ1Ee3FxJmvNTTdBkybm/LnsUNU/gK0ikpYptAUmqO1L4C6n7i5g\nsgsiZ4nbIehtORGC/oGqDhGRBwBUdaTTpg8m1DEVeE9Vh4lIVWCic5uCwFhVHZLB/dVN+cPF6NEw\nYIDZ13DOOeG99487f2Tsj2MZt3oc8afF06VOFzrV6USVklXC+yCLxRISfx35iye/fpLJ6yfzcquX\n6XRhp6it+b7zDjz3HHz11ckneGcSgn4RxptVGPgZMy7HAROAKkQpBN1u5nWZSZOgRw+YOxcuuCA8\n90x/NlPnOp3pUqcLdcrVCc8DLBZLnlm0bREPfPUA5YqV461r36Ja6WpRkeO//zUHpU6YYHKDgrc2\n89ozE1xkzhx44AGYOjV3BiptYRTM2Uwjl47kqo+uov7I+mzet5kR14xgy6NbeKHFC540UMH6+RE/\n6+dn3SA8+jWs1JCl9y2l1XmtaPh+QwZ9O4ijx4/mXbgc0qEDfPqpOf5n4sTs28casZHfw4csXAid\nOpk/iosvzt09jqYcZcKaCYxdNZbAlgCtz2tN70a9aVOtDUUKRjB23WKx5IpCcYXoc0UfOtbqSM/p\nPak3sh4jrzPnqkWSZs1g5kxz0u+e9LtRYxzr7nOBH380CWNHjTIpS3LKb/t/48UFLzJ21Vh7NpPF\n4hNUlUnrJ/HIjEdoWbUlL7Z8kbJFy0ZUhk2bTCq2X36x7r58y08/GcM0fHjODdQv+37hvi/uo/7I\n+hQrVIw1PdYw+47ZdK3X1Rooi8XjiAjta7ZnbY+1lChSgtpv1Wb0itERzVhRrZo5+dtLWCMVRrZt\nM6fpDhxo/L+hsvHPjXSd3JUG7zWgfPHybOy5kaEth7Jx2Ub3hI0B7LqGd/GzbuCufmcUOYPX27zO\ntM7TGL54OFd/fDXr96x37XnpKV8+Yo8KC9ZIhYndu42Lr2dPk/YoFNbsWkPn/3am8YeNOa/UeWx6\neBPPXf0cZYqWcVdYi8USdS6pcAk/3PsDN11wE00+bMLTc5/myPEj0RYr5rBrUmFg/364+mrj3hs0\nKPv2K/5YwaBvBzH/t/k81vAxelzWw7rzLJZ8zLYD23hkxiOs2rmKt699m+ZVm7v6PC+FoFsjlUf+\n/hvatIG6dc06VFZ79pZuX8pz3z7Hkt+X0OeKPjxwyQMUK1wscsJaLJaY5quNX9FzWk+aVGnCq61f\nde00Ai8ZKevuywPHjpmTMc85x6Q9ysxAfb/1e9qObctNn95Ey6ot+fnhn/lXo39la6Cs39/b+Fk/\nP+sG0dPvuurXsabHGs4ufjYXvnUh7y17j1RNjYossYI1UrkkJQXuvBMKF4aPPsr4TKh5W+bR/OPm\ndJnYhRtr3MimXpvo2aCnzaFnsVgypVjhYrzU6iVm3zGbD5Z/wFUfXcXqXaujLVbUsO6+XKBqMkn8\n/LPJJhF8bouqMueXOTz37XPsSNrBk02e5Pa6t1MorlDE5bRYLN4mVVN5d9m7DJg7gHvr38uApgMo\nWqhonu/rJXefNVI5RBX69oVvvzVpj844I61emfbTNJ779jkOHD3AU1c+xa0X3krBAjaph8ViyRt/\nJP3BYzMf44dtPzDimhG0PT8XWQKC8JKRsu6+HDJkCMyYAdOnGwOVqqlMWjeJS9+7lP5f96d3o96s\nenAVXep2ybOBsn5/b+Nn/fysG8SefuWLl2dch3G8fe3b9Jzek1s+u4XtB7dHW6yIYI1UDnjrLfjw\nQ3MmVMn4FCasmUC9d+oxaP4gBlw1gBXdV9CxdkfiCsRFW1SLxeJDWldrzeoHV3N+6fO56J2LGLF4\nBCmpKdEWy1Wsuy9E/vMf6N8fvgkc54dD43l+/vPEnxbPgKsG0LZa26idF2OxWPIna3atofvU7hxL\nOcbI60ZSr3y9kPt6yd1njVQIfPEF3Nc9mV7vjWHUz4OpWKIiA64aQPNzm1vjZLFYokaqpvLR8o/o\n/yuZncsAAA9PSURBVHV/7qh7BwObDaR44eLZ9vOSkXLV3ScibURkvYj8JCJPZNImUUSWi8hqEQnk\npG8kmDHnKF1ee4e4R88n8OcnfHDDB8zrOo8WVVu4bqBizS8ebqx+3sXPuoF39CsgBeh2cTdW91jN\n7r93U/ut2kxZPyXX9xOROGc8/tIplxaR2SKyUURmiUh82IQPEdeMlIjEAW8CbYBaQCcRqZmuTTww\nArheVS8Ebg61r9scTj5MnwnDuXZGNWq3/4L/dhrHnDvn0DShaSTFsFgslmw5q9hZfHzTx3zU7iP6\nzunLTZ/exNb9W3Nzq0eAtUCai6ofMFtVqwNfO+WI4pq7T0QaAc+oahun3A9AVV8IatMDKK+qT+e0\nr1MfdnffoWOHeGfpOwyd/woH1jXghWv+j0dvuTSsz7BYLBa3OHL8CEO/G8rwxcN56sqn6HV5r1Mi\njTNy94lIJWAU8DzwL1W9XkTWA01VdaeIlAcCqpqLc8Zzj5vuvopAsCnf5tQFcz5QWkTmishSEbkj\nB33DyoGjBxgyfwhVh1VlzoZFyNjpfNR6sjVQFovFU5xW8DSeSXyGBfcs4MuNX9LgvQYs+X1JKF1f\nAx4HgvMwlVPVnc77nUC5MIubLW7uNA1lilMIuBhoDhQFForIohD7AtC1a1cSEhIAiI+Pp169eiQm\nJgIn/MpZlQ8mH+R/hf7Hm0ve5KLiF9Gv/FCGP92VgX3h7LMDBAJZ93ez/Prrr+dYHy+VrX7eLQev\n2cSCPFa/U8s7Vu9gQJUBbCu9jdaDWlNuWznql6pP9arVSY+IXAfsUtXlIpJ4SgNAVVVEopHiR115\nAQ2BGUHl/sAT6do8ATwbVH4fsy6VbV+nXnPLnkN79Kmvn9IyQ8to18lddcOeDbp7t2qtWqovvJDr\n24aVuXPnRlsEV7H6eRc/66bqP/32HNqj3aZ004qvVNTP1nymztgZPJYOxnivNgM7gEPAGGA9ZkkG\n4GxgvebBLuTm5eaaVEFgA2aWtB1YDHRS1XVBbS7ABEi0BooAPwC3Ahuz6+v015zKvzNpJ68sfIUP\nln9Ah5od6NekH1VLVeXAAWjeHFq0MFklLBaLxW/M/3U+3ad2Z+1DazMNQReRpkAfNWtSLwJ/qupQ\nJzYgXlUjGjzh6j4pEWkLvA7EAR+o6hAReQBAVUc6bfoAd2P8oO+p6rDM+mZw/5CN1PaD23lxwYt8\nvPJjOtfpTN/GfalSsgoAhw+bAwtr1jRZJezWJ4vF4leOpRyjSMEi2Rmp3qp6g4iUBiYAVYAtwC2q\n+lfkpM0Hm3l/2/8bQ78byrjV4+haryt9ruhDhTMq/HM9ORnatzd5+MaMgbgYymgUCAT+8S/7Eauf\nd/GzbuB//by0mde3Kbp/2fcLQ+YPYeL6idxb/17W91x/yimXKSlw110ms/no0bFloCwWi8Xiw5nU\nhj0bGPzdYKZunMqDlz7Iow0fpUzRMqf0VYUePWDdOpPR/HR7DqHFYskn2JlUFFizaw3Pz3+e2b/M\n5uEGD7Pp4U3En5Z5Bo+nnoKlS+Hrr62BslgslljF80d1rPhjBTdPuJmrP76auuXq8vPDPzOg6YAs\nDdTQoTB5splBlSgRQWFzSPBeDT9i9fMuftYN/K+fl/D8TOqasdfQ54o+jL5xNMUKF8u2/ciR5jV/\nPpQtGwEBLRaLxZJrPL8m9fexvzm9UGj+unHj4PHHYd48OO88l4WzWCyWGMVLa1KeN1Khyj91KnTr\nBnPmwIUXuiyYxWKxxDBeMlKeX5MKhXnz4O67YcoUbxkov/vFrX7exc+6gf/18xK+N1JLl0LHjjB+\nPFx+ebSlsVgsFktO8LW7b+1auPpqEyjRrl0EBbNYLJYYxrr7YoDNm6F1a3j5ZWugLBaLxav40kjt\n2AEtW0K/fnD77dGWJvf43S9u9fMuftYN/K+fl/Cdkdq7F1q1MoESDz0UbWksFsv/t3fuwXaNZxj/\nPRIZDkrTi2umwaBktEKlKqRIREJrepUwpaW3MTWJmioxjHZMp2Sm07tRRjUM0RIyoSUJMqop4pIj\nEY5L5UxdkqAGiZBG8/SP79uy7NnnIrLP3mt5fzN7zlrvt9Ze73P2nv3Od3vfIHg/VGpOavXqVA9q\nzBiYPj1KbgRBEDSiTHNSlQlSb70Fxx0He+wBl18eASoIgqAnyhSkmjrcJ2mCpC5JT0k6p0H7EZJe\nk7Q4vy4otHVLWpLti3p7zvr1MHlySnN02WXVCVBVHxcPfeWlytqg+vrqkTRM0gJJyyQ9KmlKtg+V\nNF/Sk5LmSeo5KWqTaFqQkjSIVBp+ArAfcKKkfRtcerftkfl1UcFu4IhsH9XTczZsgNNOg3Xr2q9o\n4fuls7Oz1S40ldBXXqqsDaqvrwHrgR/aHgEcAvwg/16fC8y3vTdwZz4fUJrZkxoFPG272/Z64Hqg\n0WLw3vo9ffaJpk6F7m6YNQuGDNk0R9uVV18d0CrNA07oKy9V1gbV11eP7ZW2O/PxGuBxYFfgeGBG\nvmwG8KWB9q2ZQWpX4NnC+XPZVsTAoZIekfQ3SfvVtd0h6UFJ3+3pIQsXwq23QkfHZvM7CILgA4uk\n4cBI4H5gR9urctMqYMeB9qeZpTr6syLjYWCY7bWSJgKzgb1z22jbKyR9DJgvqcv2PfVvMHcubL/9\n5nO6neju7m61C00l9JWXKmuD6uvrCUnbArOAqbZXqzDBb9uSBnylXdNW90k6BPiJ7Qn5fBqwwfYl\nvdyzHDjI9it19guBNbZ/UWcv79LEIAiCFlK/uk/SlsCtwG22f5VtXaS1ASsl7QwssP3JgfSzmT2p\nB4G9ctfxBWAScGLxAkk7Ai/mCD2KFDRfkdQBDMqRfBtgPPDT+geUZQllEARBO6PUZboSeKwWoDJz\ngG8Cl+S/swfat6YFKdtvSzoDmAsMAq60/bik7+f2PwBfA06X9DawFpicb98JuCl3NQcD19qe1yxf\ngyAIPuCMBr4BLJG0ONumARcDf5H0baAbOGGgHSv1Zt4gCIKg2rR17j5Jf5S0StLSgq3HzWWSpuWN\nw12SxrfG6/6xKZvnSqZvK0n3S+qU9Jikn2d7JfTVkDQobzi/JZ9XRl+jDfVV0SdpB0k3Sno8fz8/\nWyFt+2hjgoTFSgkTppRWn+22fQGHk5ZCLi3YpgM/zsfnABfn4/2ATmBLYDjwNLBFqzX0om0n4IB8\nvC3wBLBvVfRlnzvy38HAfcBhVdKX/T4LuBaYU6XvZ/Z5OTC0zlYJfaQ9P6cVvp/bV0Vbnc4tgBXA\nsLLqa7kD/fgnD68LUl2ktfu1H/qufDwNOKdw3e3AIa32/z3onA2Mq6I+oAN4ABhRJX3AbsAdwJHA\nLdlWJX3LgY/U2UqvLwekZxrYS6+tgabxwD1l1tfWw3090NPmsl1IG4ZrNNo83Jb0c/Nc6fRJ2kJS\nJ0nHAtvLqJA+4JfA2cCGgq1K+hptqK+Cvt2BlyRdJelhSVfkVcRV0FbPZGBmPi6lvjIGqXdwCvu9\nrfxo+1Uh9Zvnim1l12d7g+0DSD2OMZKOrGsvrT5JXyBtn1hMD+m7yqwvM9r2SGAiKZfb4cXGEusb\nDBwIXGr7QOAN6nLSlVjbO0gaAnwRuKG+rUz6yhikVknaCSBvLnsx258njbvW2C3b2pa8eW4WcI3t\n2v6DyuirYfs14K/AQVRH36HA8Uob0GcCR0m6hurow/aK/Pcl4GZSPs4q6HsOeM72A/n8RlLQWlkB\nbUUmAg/lzw9K+tmVMUjVNpfBuzeXzQEmSxoiaXdgL6DXEh+tROpz8xyUW99Ha6uHJG0NHA0spiL6\nbJ9ne5jt3UlDKnfZPpmK6JPUIWm7fFzbUL+UCuizvRJ4VlItBds4YBlwCyXXVseJbBzqg7J+dq2e\nFOtj0m8mKVvFf0nJak8FhpImq58E5gE7FK4/j7QypQs4ptX+96HtMNJcRifpx3sxqaxJVfTtT8rN\n2AksAc7O9kroq9P6eTau7quEPtK8TWd+PQpMq5i+T5MW8zwC3ERaTFEJbdnfbYCXge0KtlLqi828\nQRAEQdtSxuG+IAiC4ANCBKkgCIKgbYkgFQRBELQtEaSCIAiCtiWCVBAEQdC2RJAKgiAI2pYIUkEQ\nBEHbEkEqqBSS7qqvhyPpTEmX9uPeP0n6ah/XnJkzaDQFSSdJWifp/Dr7qEJ9oCWSJtW1nyvppGb5\nFQStIoJUUDVmktIUFZkEXNePe/tKugkwlVR6ZLMj6ShSVvV9gXGSTik0LwUOckr4Oh74vaRBhfbx\nwNxm+BUErSSCVFA1ZgHHSRoM75RB2cX2PxpdLOl3uRrpfODj5IzmksbmMg5LJF2Z85pNIZU1WCDp\nzgbvdbCkhUrViO+TtK2kb0manSuhLpd0hqQf5fe+V9KH8737AxcB420/AxwLnCTpaADbb9qulQTZ\nGnjN9v/yvR8Chtj+j6SvS1qafbh7s/xHg6CFRJAKKoXtV0jJMY/NpsnAnxtdK+krwN6knssppMzm\nlrQVcBVwgu1PkUo7nG77N6RckkfYHlv3XkOA64EpTuVJxgFv5uYRwJeBg4GfAa87lYi4Nz8X20tt\nj3bOWG17re0JtucXnjFK0jJSMtSzCo8fR8rJBnABKdAdQCrTEASlJoJUUEWKQ36TeHcm6CKHA9c5\nsQK4K9v3AZbbfjqfzwDG9PHMfYAVth8CsL0m93RMKvj4hu2XgVdJ2bYhDeEN768o24tsjyCVlfh1\n7kEBHAPclo8XAjMkfYcUXIOg1ESQCqrIHGCspJFAh1Nhwp5oVLCwfl5KDWzvhXWF4w2F8w1sQiCx\n3QX8i1RSAVKdp0W57XTgfFJ9oIckDd1En4OgLYggFVQO22uABaQhu94WTPwdmJTL3O8M1CoHPwEM\nl7RnPj8ZqM3vrAZqPRgkXS3pM6QSBzvnYyRtlxc2NKzaW7u9v5okDS/Ms32CFKCekjQC6HIuZyBp\nz9zjuhB4iVTALghKSwwHBFVlJqlO0Ak9XWD75ryi7jHg38A/s32dpFOBG3JgWARclm+7HLhd0vN5\nXmp/4AXb6/Oy8N/mJeprSYUe61cM1h/3t4d2GHCupPXAeuB7tl+XNJGNQ30A0yXtRQqAd9he0s/3\nD4K2JOpJBcEmkueErrA9qc+Lm+fDPOBk26ta5UMQNJMIUkEQBEHbEsN9QeXJe5CurjO/ZftzrfAn\nCIL+Ez2pIAiCoG2J1X1BEARB2xJBKgiCIGhbIkgFQRAEbUsEqSAIgqBtiSAVBEEQtC3/BzGnaNSG\n31xmAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x10b66eed0>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required diameter of Pump is 0.108 m\n",
        "The required rotational speed is 168.0 rad/s\n",
        "The required Brake Horse Power is 160.0 W\n"
       ]
      }
     ],
     "prompt_number": 33
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-12, Page No:819"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "rho=998 #Density of fluid in kg/m^3\n",
      "g=9.81 #Acceleration due to gravity in m/s^2\n",
      "V_dot=12.8 #Volumetric Flow rate in m^3/s\n",
      "H_gross=325 #Gross Head in m\n",
      "C=10**-6 #COnversion Factor\n",
      "n_turbine=0.952 #Efficiency of turbine in fraction\n",
      "n_generator=0.945 #Efficiency of generator in fraction\n",
      "n_other=1-0.035 #Other efficieny in fraction\n",
      "no=12 #Number of Turbines\n",
      "\n",
      "#Calculations\n",
      "W_dot=rho*g*V_dot*H_gross*C #Ideal Power produced in MW\n",
      "\n",
      "W_electrical_dot=W_dot*n_turbine*n_other*n_generator #Actual Electric Power in mW\n",
      "\n",
      "W_total=no*W_electrical_dot #Total Power produced in MW\n",
      "\n",
      "#Result\n",
      "print \"The electrical power generated is\",round(W_total),\"MW\"\n",
      "#The answer differs due to decimal point accuracy\n",
      "#Answer in the text has been rounded off and multiplied hence the inconsistency"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The electrical power generated is 424.0 MW\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-13, Page No:820"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "r2=2.5 #Inlet Radius in m\n",
      "r1=1.77 #Outlet raius in m\n",
      "b2=0.914 #Runner blade width at inlet in m\n",
      "b1=2.62 #Runner blade width at outlet in m\n",
      "n_dot=120 #Speed in rpm\n",
      "w=12.57 #Rad/s\n",
      "alpha1=10 #Angle in degrees\n",
      "alpha2=33 #turning of flow in degrees\n",
      "V_dot=599 #Volumetric Flow rate in m^3/s\n",
      "H_gross=92.4 #Gross Head in m\n",
      "C=10**-6 #Conversion Factor\n",
      "g=9.81 #Acceleration due to gravity in m/s^2\n",
      "\n",
      "#Calculations\n",
      "#Part(a)\n",
      "#Runner Inlet\n",
      "V2_n=V_dot/(2*pi*r2*b2) #Normal Component of velocity in m/s\n",
      "V2_t=V2_n*tan((alpha2*pi)/180) #Tangential Component in m/s\n",
      "beta2=(arctan(V2_n/(w*r2-V2_t)))*(180/pi) #Runner leading edge angle in degrees\n",
      "\n",
      "#Runner Outlet\n",
      "V1_n=V_dot/(2*pi*r1*b1) #Normal Component of velocity in m/s\n",
      "V1_t=V1_n*tan((alpha1*pi)/180) #Tangential Component in m/s\n",
      "beta1=(arctan(V1_n/(w*r1-V1_t)))*(180/pi) #Runner leading edge angle in degrees\n",
      "\n",
      "#Using Euler Turbomachine Equation\n",
      "W_shaft=rho*w*V_dot*(r2*V2_t-r1*V1_t)*C #Shaft output power in MW\n",
      "\n",
      "H=W_shaft/(rho*g*V_dot*C) #Net Head in m\n",
      "\n",
      "#Part(b)\n",
      "#Similiary repeat calculations for part(b) and part(c)\n",
      "#Result\n",
      "#Results are for only part a\n",
      "print \"The inlet runner blade angle is\",round(beta2,1),\"degrees\"\n",
      "print \"The outlet runner blade angle is\",round(beta1,1),\"degrees\"\n",
      "print \"The output power is\",round(W_shaft),\"MW\"\n",
      "print \"The net head required is\",round(H,1),\"m\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The inlet runner blade angle is 84.1 degrees\n",
        "The outlet runner blade angle is 47.8 degrees\n",
        "The output power is 461.0 MW\n",
        "The net head required is 78.6 m\n"
       ]
      }
     ],
     "prompt_number": 32
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-14, Page no:830"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "Cp=0.4 #Power Coefficient \n",
      "n_gearbox=0.85 #Efficiency in fraction\n",
      "rho=1.204 #Density of air in kg/m^3\n",
      "V=10 #Velocity of flow in m/s\n",
      "D=12.5 #Diameter in m\n",
      "\n",
      "#Calculations\n",
      "W_dot_op=(n_gearbox*Cp*pi*rho*V**3*D**2)/8 #Work done in W\n",
      "\n",
      "#Result\n",
      "print \"Electric Power produced is\",round(W_dot_op),\"W\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Electric Power produced is 25118.0 W\n"
       ]
      }
     ],
     "prompt_number": 36
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-15,Page No:832"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "D_A=2.05 #Diameter in m\n",
      "n_A=120 #Speed in rpm\n",
      "w_A=12.57 #Angular Speed in rad/s\n",
      "V_A_dot=350 #Volumetric Flwo rate in m^3/s\n",
      "H_A=7.5 #Head of water in m*10\n",
      "H_B=10.4 #Head of water in m*10\n",
      "bhp_A=242 #Brake Horse Power at A in MW\n",
      "n_turbine_A=0.942 #Efficiency of turbine A\n",
      "rho_A=998 #Density of water in kg/m^3\n",
      "\n",
      "#Calculations\n",
      "a=H_B/H_A\n",
      "rho_B=rho_A #Density in kg/m^3\n",
      "n_B=n_A #Speed at b in rpm\n",
      "D_B=D_A*(a**0.5) #Diameter of the new pump in m\n",
      "V_B_dot=V_A_dot*(n_B/n_A)*((D_B/D_A)**3) #Volumetric Flow rate at B in m^3/s\n",
      "bhp_B=bhp_A*(rho_B/rho_A)*((n_B/n_A)**3)*((D_B/D_A)**5) #Brake Horse Power in MW\n",
      "\n",
      "n_turbine=1-(1-n_turbine_A)*((D_A/D_B)**0.2) #Efficiency correction in fraction\n",
      "\n",
      "#Result\n",
      "print \"The brake horse power is\",round(bhp_B),\"MW\"\n",
      "print \"The diameter of the new turbine is\",round(D_B,2),\"m\"\n",
      "print \"The volumetric Flow rate is\",round(V_B_dot),\"m^3/s\"\n",
      "print \"The corrected efficiency is\",round(n_turbine,3)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The brake horse power is 548.0 MW\n",
        "The diameter of the new turbine is 2.41 m\n",
        "The volumetric Flow rate is 572.0 m^3/s\n",
        "The corrected efficiency is 0.944\n"
       ]
      }
     ],
     "prompt_number": 54
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.14-16, Page No:836"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "w_A=12.57 #Angular Speed in rad/s\n",
      "rho_A=998 #Density of fluid in kg/m^3\n",
      "g=9.81 #Acceleration due to gravity in m/s^2\n",
      "H_A=75 #Head in m\n",
      "bhp_A=242*10**6 #Brake Horse Power at A in W\n",
      "H_B=104 #Head in m\n",
      "bhp_B=548 *10**6 #Brake Horse Power at B in W\n",
      "\n",
      "#Calculations\n",
      "#For Turbine A\n",
      "Nst_A=(w_A*bhp_A**0.5)/(rho_A**0.5*g**1.25*H_A**1.25) #Dimensionless specific speed at A\n",
      "\n",
      "#For turbine B\n",
      "w_B=w_A #Angular Speed in rad/s\n",
      "rho_B=rho_A #Density of fluid in kg/m^3\n",
      "Nst_B=(w_B*bhp_B**0.5)/(rho_B**0.5*g**1.25*H_B**1.25) #Dimensionless specific speed at B\n",
      "\n",
      "Nst_US_A=43.46*Nst_B #Turbine specific speed in US units\n",
      "\n",
      "#Result\n",
      "print \"The Turbine Specific Speed in US units is\",round(Nst_US_A,1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Turbine Specific Speed in US units is 70.2\n"
       ]
      }
     ],
     "prompt_number": 55
    }
   ],
   "metadata": {}
  }
 ]
}