summaryrefslogtreecommitdiff
path: root/backup/Engineering_Physics_by_P.K.Palanisamy_version_backup/Chapter9_1.ipynb
blob: bd885ca7defcb9e38490e866ee0f4c5c5a8a35f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#9: Physics of Semiconductor Devices"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 9.1, Page number 9.14"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "wavelength of radiation is 0.868 micro m\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "h=6.62*10**-34;     #planck's constant(J sec)\n",
    "c=3*10**8;     #velocity of light(m/sec)\n",
    "Eg=1.43*1.6*10**-19;    #energy gap(J)\n",
    "\n",
    "#Calculation\n",
    "lamda=h*c*10**6/Eg;    #wavelength of radiation(micro m)\n",
    "\n",
    "#Result\n",
    "print \"wavelength of radiation is\",round(lamda,3),\"micro m\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 9.2, Page number 9.28"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "time taken is 3.7 *10**-9 s\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "d=5*10**-6;     #thickness(m)\n",
    "Dc=3.4*10**-3;    #diffusion coefficient(m**2 S-1)\n",
    "\n",
    "#Calculation\n",
    "tow_diff=d**2/(2*Dc);     #time taken(s)\n",
    "\n",
    "#Result\n",
    "print \"time taken is\",round(tow_diff*10**9,1),\"*10**-9 s\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 9.3, Page number 9.28"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "transit time is 5e-11 s\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "w=5*10**-6;     #thickness(m)\n",
    "vsat=10**5;     #velocity(m/s)\n",
    "\n",
    "#Calculation\n",
    "tow_drift=w/vsat;     #transit time(s)\n",
    "\n",
    "#Result\n",
    "print \"transit time is\",tow_drift,\"s\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 9.4, Page number 9.29"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "diode capacitance is 28.8 pF\n",
      "frequency bandwidth is 110 MHz\n",
      "answer varies due to rounding off errors\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "A=10**-6;     #area(m**2)\n",
    "e=1.6*10**-19;     #charge(coulomb)\n",
    "Nd=10**21;     #electron concentration(m**-3)\n",
    "epsilonr=11.7;\n",
    "epsilon0=8.85*10**-12;\n",
    "V=10;    #potential(V)\n",
    "RL=50;   #resistance(ohm)\n",
    "\n",
    "#Calculation\n",
    "Cj=(A/2)*math.sqrt(2*e*epsilonr*epsilon0*Nd/V);      #diode capacitance(F)\n",
    "delta_fel=1/(2*math.pi*RL*Cj);    #frequency bandwidth(Hz)\n",
    "\n",
    "#Result\n",
    "print \"diode capacitance is\",round(Cj*10**12,1),\"pF\"\n",
    "print \"frequency bandwidth is\",int(delta_fel*10**-6),\"MHz\"\n",
    "print \"answer varies due to rounding off errors\""
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}