summaryrefslogtreecommitdiff
path: root/backup/Engineering_Physics_by_P.K.Palanisamy_version_backup/Chapter10_1.ipynb
blob: e1e3146eda6e6c134ed367e92f60df40f8f4025d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#10: Dielectric properties"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 10.1, Page number 10.23"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "energy stored in the condenser is 1.0 J\n",
      "energy stored in the dielectric is 0.99 J\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "C=2*10**-6;    #capacitance(F)\n",
    "V=1000;      #voltage(V)\n",
    "epsilon_r=100;\n",
    "\n",
    "#Calculation\n",
    "W=C*V**2/2;    #energy stored in the condenser(J)\n",
    "C0=C/epsilon_r;\n",
    "W0=C0*V**2/2;\n",
    "E=1-W0;       #energy stored in the dielectric(J)\n",
    "\n",
    "#Result\n",
    "print \"energy stored in the condenser is\",W,\"J\"\n",
    "print \"energy stored in the dielectric is\",E,\"J\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 10.2, Page number 10.24"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "ratio betwen electronic and ionic polarizability is 1.738\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "epsilon_r=4.94;\n",
    "n2=2.69;\n",
    "\n",
    "#Calculation\n",
    "x=(epsilon_r-1)/(epsilon_r+2);\n",
    "y=(n2-1)/(n2+2);\n",
    "r=(x/y)-1;       #ratio betwen electronic and ionic polarizability\n",
    "\n",
    "#Result\n",
    "print \"ratio betwen electronic and ionic polarizability is\",round(1/r,3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 10.3, Page number 10.24"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "parallel loss resistance is 10.0 ohm\n",
      "answer varies due to rounding off errors\n",
      "parallel loss capacitance is 226.56 *10**-12 Farad\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "epsilon_r=2.56;\n",
    "epsilon_R=2.65*0.7*10**-4;\n",
    "tan_delta=0.7*10**-4;   \n",
    "A=8*10**-4;    #area(m**2)\n",
    "d=0.08*10**-3;    #diameter(m)\n",
    "f=1*10**6;    #frequency(Hz)\n",
    "epsilon0=8.85*10**-12;\n",
    "\n",
    "#Calculation\n",
    "Rp=d/(2*math.pi*f*epsilon0*epsilon_R*A);    #parallel loss resistance(ohm)\n",
    "Cp=A*epsilon0*epsilon_r/d;     #parallel loss capacitance(Farad)\n",
    "\n",
    "#Result\n",
    "print \"parallel loss resistance is\",round(Rp/10**6),\"ohm\"\n",
    "print \"answer varies due to rounding off errors\"\n",
    "print \"parallel loss capacitance is\",round(Cp*10**12,2),\"*10**-12 Farad\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 10.4, Page number 10.25"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "dielectric constant of material is 1.339\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "N=3*10**28;     #number of atoms(per m**3)\n",
    "alphae=10**-40;    \n",
    "epsilon0=8.854*10**-12;\n",
    "\n",
    "#Calculation\n",
    "epsilon_r=1+(N*alphae/epsilon0);   #dielectric constant of material\n",
    "\n",
    "#Result\n",
    "print \"dielectric constant of material is\",round(epsilon_r,3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 10.5, Page number 10.26"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "electronic polarizability is 2.243 *10**-41 Fm**2\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "N=2.7*10**25;     #number of atoms(per m**3)\n",
    "epsilon0=8.854*10**-12;\n",
    "epsilon_r=1.0000684;\n",
    "\n",
    "#Calculation\n",
    "alphae=epsilon0*(epsilon_r-1)/N;    #electronic polarizability(Fm**2)\n",
    "\n",
    "#Result\n",
    "print \"electronic polarizability is\",round(alphae*10**41,3),\"*10**-41 Fm**2\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 10.6, Page number 10.26"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "capacitance is 8.85e-12 F\n",
      "charge on plates is 8.85e-10 coulomb\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "epsilon0=8.85*10**-12;\n",
    "A=100*10**-4;    #area(m**2)\n",
    "d=10**-2;    #diameter(m)\n",
    "V=100;       #potential(V)\n",
    "\n",
    "#Calculation\n",
    "C=epsilon0*A/d;    #capacitance(F)\n",
    "Q=C*V;        #charge on plates(coulomb)\n",
    "\n",
    "#Result\n",
    "print \"capacitance is\",C,\"F\"\n",
    "print \"charge on plates is\",Q,\"coulomb\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 10.7, Page number 10.27"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "electronic polarizability is 3.181 *10**-40 Fm**2\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "n=6.02*10**26;     #avagadro number\n",
    "d=2050;     #density(kg/m**3)\n",
    "w=32;       #atomic weight\n",
    "gama=1/3;    #internal field constant\n",
    "epsilon0=8.55*10**-12;\n",
    "epsilon_r=3.75;\n",
    "\n",
    "#Calculation\n",
    "N=n*d/w;       #number of atoms(per m**3)\n",
    "alphae=3*epsilon0*((epsilon_r-1)/(epsilon_r+2))/N;      #electronic polarizability(Fm**2)\n",
    "\n",
    "#Result\n",
    "print \"electronic polarizability is\",round(alphae*10**40,3),\"*10**-40 Fm**2\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 10.8, Page number 10.28"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "resultant voltage is 39.73 Volts\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "Q=2*10**-10;    #charge(C)\n",
    "d=4*10**-3;     #seperation(m)\n",
    "epsilon_r=3.5;\n",
    "A=650*10**-6;    #area(m**2)\n",
    "epsilon0=8.85*10**-12;\n",
    "\n",
    "#Calculation\n",
    "V=Q*d/(epsilon0*epsilon_r*A);      #resultant voltage(V)\n",
    "\n",
    "#Result\n",
    "print \"resultant voltage is\",round(V,2),\"Volts\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##Example number 10.9, Page number 10.28"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "dielectric displacement is 265.5 *10**-9 C m**-2\n"
     ]
    }
   ],
   "source": [
    "#importing modules\n",
    "import math\n",
    "from __future__ import division\n",
    "\n",
    "#Variable declaration\n",
    "d=2*10**-3;     #seperation(m)\n",
    "epsilon_r=6;\n",
    "V=10;      #voltage(V)\n",
    "epsilon0=8.85*10**-12;\n",
    "\n",
    "#Calculation\n",
    "E=V/d;\n",
    "D=epsilon0*epsilon_r*E;      #dielectric displacement(C m**-2)\n",
    "\n",
    "#Result\n",
    "print \"dielectric displacement is\",round(D*10**9,1),\"*10**-9 C m**-2\""
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}