summaryrefslogtreecommitdiff
path: root/_Power_Electronics/Chapter2_2.ipynb
blob: 1872c9f4405d938bb27a59b1a658ee1a033c3d9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 02 : Power Semiconductor Diodes and Transistors"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.1, Page No 21"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "B=40.0\n",
      "R_c=10                    #ohm\n",
      "V_cc=130.0                #V\n",
      "V_B=10.0                  #V\n",
      "V_CES=1.0                 #V\n",
      "V_BES=1.5                 #V\n",
      "\n",
      "#Calculations\n",
      "I_CS=(V_cc-V_CES)/R_c     #A\n",
      "I_BS=I_CS/B                #A\n",
      "R_B1=(V_B-V_BES)/I_BS\n",
      "P_T1=V_BES*I_BS+V_CES*I_CS\n",
      "ODF=5\n",
      "I_B=ODF*I_BS\n",
      "R_B2=(V_B-V_BES)/I_B\n",
      "P_T2=V_BES*I_B+V_CES*I_CS\n",
      "B_f=I_CS/I_B\n",
      "\n",
      "#Results\n",
      "print(\"value of R_B in saturated state= %.2f ohm\" %R_B1)\n",
      "print(\"Power loss in transistor=%.2f W\" %P_T1)\n",
      "print(\"Value of R_B for an overdrive factor 5 = %.2f ohm\" %R_B2)\n",
      "print(\"Power loss in transistor = %.2f W\" %P_T2)\n",
      "print(\"Forced current gain=%.0f\" %B_f)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "value of R_B in saturated state= 26.36 ohm\n",
        "Power loss in transistor=13.38 W\n",
        "Value of R_B for an overdrive factor 5 = 5.27 ohm\n",
        "Power loss in transistor = 15.32 W\n",
        "Forced current gain=8\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2, Page No 24"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#initialisation of variables\n",
      "I_CEO=2*10**-3            #A\n",
      "V_CC=220.0                #V\n",
      "P_dt=I_CEO*V_CC           #instant. power loss during delay time\n",
      "t_d=.4*10**-6            #s\n",
      "f=5000\n",
      "P_d=f*I_CEO*V_CC*t_d      #avg power loss during delay time\n",
      "V_CES=2                     #V\n",
      "t_r=1*10**-6               #s\n",
      "I_CS=80                    #A\n",
      "\n",
      "#Calculations\n",
      "P_r=f*I_CS*t_r*(V_CC/2-(V_CC-V_CES)/3)            #avg power loss during rise time\n",
      "t_m=V_CC*t_r/(2*(V_CC-V_CES))\n",
      "P_rm=I_CS*V_CC**2/(4*(V_CC-V_CES))           #instant. power loss during rise time\n",
      "\n",
      "#Results\n",
      "P_on=P_d+P_r                \n",
      "print(\"Avg power loss during turn on = %.2f W\" %P_on)\n",
      "P_nt=I_CS*V_CES \n",
      "print(\"Instantaneous power loss during turn on = %.0f W\" %P_nt)\n",
      "t_n=50*10**-6\n",
      "P_n=f*I_CS*V_CES*t_n\n",
      "print(\"Avg power loss during conduction period = %.0f W\" %P_n)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Avg power loss during turn on = 14.93 W\n",
        "Instantaneous power loss during turn on = 160 W\n",
        "Avg power loss during conduction period = 40 W\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.3 Page No 26"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#initialisation of variables\n",
      "I_CEO=2*10**-3         #A\n",
      "V_CC=220          #V\n",
      "t_d=.4*10**-6   #s\n",
      "f=5000\n",
      "V_CES=2         #V\n",
      "t_r=1*10**-6    #s\n",
      "I_CS=80         #A\n",
      "t_n=50*10**-6   #s\n",
      "t_0=40*10**-6   #s\n",
      "t_f=3*10**-6    #s\n",
      "\n",
      "#Calculations\n",
      "P_st=I_CS*V_CES  # instant. power loss during t_s\n",
      "P_s=f*I_CS*V_CES*t_f   #avg power loss during t_s\n",
      "P_f=f*t_f*(I_CS/6)*(V_CC-V_CES)        #avg power loss during fall time\n",
      "P_fm=(I_CS/4)*(V_CC-V_CES)          #peak instant power dissipation\n",
      "P_off=P_s+P_f\n",
      "\n",
      "#Results\n",
      "print(\"Total avg power loss during turn off = %.2f W\" %P_off)\n",
      "P_0t=I_CEO*V_CC\n",
      "print(\"Instantaneous power loss during t_0 = %.2f W\" %P_0t)\n",
      "P_0=f*I_CEO*V_CC*t_0              #avg power loss during t_s\n",
      "P_on=14.9339              #W    from previous eg\n",
      "P_n=40                    #W    from previous eg\n",
      "P_T=P_on+P_n+P_off+P_0     \n",
      "print(\"Total power loss = %.2f W\" %P_T)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Total avg power loss during turn off = 44.91 W\n",
        "Instantaneous power loss during t_0 = 0.44 W\n",
        "Total power loss = 99.93 W\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.4, Page No 28"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#initialisation of variables\n",
      "I_CS=100.0 \n",
      "V_CC=200.0 \n",
      "t_on=40*10**-6\n",
      "\n",
      "#Calculations\n",
      "P_on=(I_CS/50)*10**6*t_on*(V_CC*t_on/2-(V_CC*10**6*t_on**2/(40*3)))       #energy during turn on\n",
      "t_off=60*10**-6\n",
      "P_off=(I_CS*t_off/2-(I_CS/60)*10**6*(t_off**2)/3)*((V_CC/75)*10**6*t_off)  #energy during turn off\n",
      "P_t=P_on+P_off           #total energy\n",
      "P_avg=300.0\n",
      "f=P_avg/P_t\n",
      "\n",
      "#Results\n",
      "print(\"Allowable switching frequency = %.2f Hz\" %f)\n",
      "#in book ans is: f=1123.6 Hz. The difference in results due to difference in rounding of of digits"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Allowable switching frequency = 1125.00 Hz\n"
       ]
      }
     ],
     "prompt_number": 10
    }
   ],
   "metadata": {}
  }
 ]
}