summaryrefslogtreecommitdiff
path: root/_A_Textbook_Of_Engineering_Physics/Chapter13.ipynb
blob: 2e8d2e4e8778435f2655ccb34e640c025b7706e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
{
 "metadata": {
  "name": "",
  "signature": "sha256:1347b69ffb48f57ed84c93fa692b1b83ef62827af6c7ff1223306a59bfbf283e"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter13-Atomic Physics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg310"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 13.1\n",
      "##calculation of rate of flow of photons\n",
      "\n",
      "##given values\n",
      "\n",
      "l=5893*10**-10;##wavelength of light in m \n",
      "P=40.;##power of sodium lamp in W\n",
      "d=10;##distance from the source in m\n",
      "s=4*math.pi*d**2;##surface area of radius in m**2\n",
      "c=3*10**8.;##velocity of light in m/s\n",
      "h=6.626*10**-34;##Planck's constant in Js\n",
      "##calculation\n",
      "E=P*1.;##\n",
      "print'%s %.2f %s'%('total energy emitted per second(in Joule)is',E,'');\n",
      "n=E*l/(c*h);##total no of photons\n",
      "R=n/s;\n",
      "print'%s %.2e %s'%('rate of flow of photons per unit area (in /m^2) is',R,'')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "total energy emitted per second(in Joule)is 40.00 \n",
        "rate of flow of photons per unit area (in /m^2) is 9.44e+16 \n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg315"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 13.2\n",
      "##calculation of threshold wavelength and stopping potential\n",
      "\n",
      "##given values\n",
      "\n",
      "l=2000.;##wavelength of light in armstrong \n",
      "e=1.6*10**-19.;##charge of electron\n",
      "W=4.2;##work function in eV\n",
      "c=3*10**8.;##velocity of light in m/s\n",
      "h=6.626*10**-34.;##Planck's constant in Js\n",
      "##calculation\n",
      "x=12400/(W);##h*c=12400 eV\n",
      "print'%s %.2f %s'%('threshold wavelength(in Armstrong)is',x,'');\n",
      "Vs=(12400/l-W);##\n",
      "print'%s %.2f %s'%('stopping potential (in VOLTS) is',Vs,'')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "threshold wavelength(in Armstrong)is 2952.38 \n",
        "stopping potential (in VOLTS) is 2.00 \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg326"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 13.3\n",
      "##calculation of momentum of X-ray photon undergoing scattering\n",
      "\n",
      "##given values\n",
      "\n",
      "alpha=60*math.pi/180.;##scattering angle in radian\n",
      "e=1.6*10**-19;##charge ofelectrone\n",
      "W=12273.;##work function in eV\n",
      "c=3*10**8;##velocity of light in m/s\n",
      "h=6.626*10**-34.;##Planck's constant in Js\n",
      "hc=12400.;##in eV\n",
      "m=9.1*10**-31##restmass of photon in kg\n",
      "##calculation\n",
      "x=hc/(W);##wavelength of photon undergoing modofied scattering in armstrong\n",
      "y=x-(h/(m*c))*(1-math.cos(alpha));\n",
      "p=h/y*10**10.;\n",
      "print'%s %.3e %s'%('momentum of photon(in kg-m/s) is',p,'');"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "momentum of photon(in kg-m/s) is 6.558e-24 \n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg327"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 13.4\n",
      "##calculation of wavelength of scattered radiation and velocity of recoiled electron\n",
      "\n",
      "##given values\n",
      "\n",
      "alpha=30*math.pi/180.;##scattering angle in radian\n",
      "e=1.6*10**-19.;##charge ofelectron\n",
      "x=1.372*10**-10.;##wavelength of incident radiation in m\n",
      "c=3*10**8;##velocity of light in m/s\n",
      "h=6.626*10**-34;##Planck's constant in Js\n",
      "m=9.1*10**-31##rest mass of photon in kg\n",
      "hc=12400.;##in eV\n",
      "##calculation\n",
      "\n",
      "y=((x+(h/(m*c))*(1-math.cos(alpha))))*10**10;\n",
      "print'%s %.2f %s'%('wavelength of scattered radiation(in armstrong)is',y,'');\n",
      "x1=x*10**10;##converting incident wavelength into armstrong\n",
      "KE=hc*e*((1/x1)-(1/y));##kinetic energy in Joule\n",
      "print'%s %.3e %s'%('kinetic energy in joule is ',KE,'');\n",
      "v=math.sqrt(2.*KE/m);\n",
      "print'%s %.2f %s'%('velocity of recoiled electron (in m/s^2)is',v,'');\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "wavelength of scattered radiation(in armstrong)is 1.38 \n",
        "kinetic energy in joule is  3.419e-18 \n",
        "velocity of recoiled electron (in m/s^2)is 2741274.99 \n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex5-pg333"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 13.5\n",
      "##calculation of wavelength of light emitted\n",
      "\n",
      "##given values\n",
      "e=1.6*10**-19;##charge of electrone\n",
      "c=3*10**8;##velocity of light\n",
      "h=6.626*10**-34;##Planck's constant in Js\n",
      "E1=5.36;##energy of first state in eV\n",
      "E2=3.45;##energy of second state in eV\n",
      "\n",
      "\n",
      "##1)calculation\n",
      "\n",
      "l=h*c*10**10/((E1-E2)*e);\n",
      "print'%s %.2f %s'%('wavelength of scattered light(in Armstrong)is',l,'');\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "wavelength of scattered light(in Armstrong)is 6504.58 \n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex6-pg361"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 13.6\n",
      "##calculation of de Broglie wavelength \n",
      "\n",
      "##1)given values\n",
      "e=1.6*10**-19.;\n",
      "h=6.626*10**-34.;##Planck's constant in Js\n",
      "V=182.;##potential difference in volts\n",
      "m=9.1*10**-31;##mass of e in kg\n",
      "\n",
      "\n",
      "##1)calculation\n",
      "\n",
      "l=h/math.sqrt(2.*e*m*V);\n",
      "print'%s %.3e %s'%('de Brogliewavelength (in m)is',l,'');\n",
      "\n",
      "\n",
      "##2)given values\n",
      "m1=1.;##mass of object in kg\n",
      "v=1.;##velocity of object in m/s\n",
      "l1=h/(m1*v);\n",
      "print'%s %.3e %s'%('debrogie wavelength of object in m) is',l1,'');"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "de Brogliewavelength (in m)is 9.102e-11 \n",
        "debrogie wavelength of object in m) is 6.626e-34 \n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex7-pg368"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 13.7\n",
      "##calculation of uncertainty in position\n",
      "\n",
      "##1)given values\n",
      "\n",
      "h=6.626*10**-34;##Planck's constant in Js\n",
      "v1=220;##velocity of e in m/s\n",
      "m=9.1*10**-31;##mass of e in kg\n",
      "A=0.065/100.;##accuracy\n",
      "\n",
      "\n",
      "##1)calculation\n",
      "v2=v1*A;##uncertainty in speed\n",
      "x1=h/(2*math.pi*m*v2);##\n",
      "print'%s %.4f %s'%('uncertainty in position of e (in m)is',x1,'');\n",
      "\n",
      "\n",
      "##2)given values\n",
      "m1=150/1000.;##mass of object in kg\n",
      "x2=h/(2*math.pi*m1*v2);\n",
      "print'%s %.3e %s'%('uncertainty in position of baseball(in m) is',x2,'');"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "uncertainty in position of e (in m)is 0.0008 \n",
        "uncertainty in position of baseball(in m) is 4.916e-33 \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex8-pg377"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 13.8\n",
      "##calculation of energy states of an electron and grain of dust and comparing\n",
      "\n",
      "##1)given values\n",
      "L1=10*10**-10;##width of potential well in which e is confined\n",
      "L2=.1*10**-3;##width of potential well in which grain of dust is confined\n",
      "h=6.626*10**-34;##Planck's constant in Js\n",
      "v1=10**6;##velocity of garin of dust in m/s\n",
      "m1=9.1*10**-31;##mass of e in kg\n",
      "m2=10**-9;##mass of grain in kg\n",
      "\n",
      "##1)calculation\n",
      "\n",
      "Ee1=1**2*h**2./(8.*m1*L1**2.);##first energy state of electron\n",
      "print'%s %.3e %s'%('first energy state of e is ',Ee1,'');\n",
      "Ee2=2**2*h**2/(8*m1*L1**2);##second energy state of electron\n",
      "print'%s %.3e %s'%('second energy state of e is ',Ee2,'');\n",
      "Ee3=3**2*h**2/(8*m1*L1**2);##third energy state of electron\n",
      "print'%s %.3e %s'%('third energy state of e is ',Ee3,'');\n",
      "print('Energy levels of an electron in an infinite potential well are quantised and the energy difference between the successive levels is quite large.Electron cannot jump from one level to other on strength of thermal energy.Hence quantization of energy plays a significant role in case of electron')\n",
      "\n",
      "Eg1=1**2*h**2/(8.*m2*L2**2.);##first energy state of grain of dust\n",
      "print'%s %.3e %s'%('first energy state of grain of dust is ',Eg1,'');\n",
      "Eg2=2**2*h**2/(8.*m2*L2**2.);##second energy state of grain of dust\n",
      "print'%s %.3e %s'%('second energy state of grain of dust is ',Eg2,'');\n",
      "Eg3=3**2*h**2/(8.*m2*L2**2.);##third energy state of grain of dust\n",
      "print'%s %.3e %s'%('third energy state of  grain of dust is ',Eg3,'');\n",
      "KE=m2*v1**2/2.;##kinetic energy of grain of dust;\n",
      "print'%s %.2f %s'%('kinetic energy of grain of dust is',KE,'');\n",
      "print('The energy levels of a grain of dust are so near to each other that they constitute a continuum.These energy levels are far smaller than the kinetic energy possessed by the grain of dust.It can move through all these energy levels without an external supply of energy.Thus quantization of energy levels is not at all significant in case of macroscopic bodies.')"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "first energy state of e is  6.031e-20 \n",
        "second energy state of e is  2.412e-19 \n",
        "third energy state of e is  5.428e-19 \n",
        "Energy levels of an electron in an infinite potential well are quantised and the energy difference between the successive levels is quite large.Electron cannot jump from one level to other on strength of thermal energy.Hence quantization of energy plays a significant role in case of electron\n",
        "first energy state of grain of dust is  5.488e-51 \n",
        "second energy state of grain of dust is  2.195e-50 \n",
        "third energy state of  grain of dust is  4.939e-50 \n",
        "kinetic energy of grain of dust is 500.00 \n",
        "The energy levels of a grain of dust are so near to each other that they constitute a continuum.These energy levels are far smaller than the kinetic energy possessed by the grain of dust.It can move through all these energy levels without an external supply of energy.Thus quantization of energy levels is not at all significant in case of macroscopic bodies.\n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}