summaryrefslogtreecommitdiff
path: root/_A_Textbook_Of_Engineering_Physics/Chapter12_1.ipynb
blob: 7ced75e15f9d9825bed558d1af95dbe9fb8ae711 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
{
 "metadata": {
  "name": "",
  "signature": "sha256:4671074782cd36f56500529820b222f929e1453d2be6b38ad8ab85fd8d868d5a"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter12-Ultrasonics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg295"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 12.1\n",
      "##calculation of natural frequency,magnetostriction\n",
      "\n",
      "##given values\n",
      "\n",
      "l=40*10**-3.;##length of pure iron rod\n",
      "d=7.25*10**3.;##density of iron in kg/m**3\n",
      "Y=115*10**9.;##Young's modulus in N/m**2 \n",
      "\n",
      "##calculation\n",
      "f=(1*math.sqrt(Y/d))/(2.*l);\n",
      "print'%s %.2f %s'%('the natural frequency(in kHz) is',f*10**-3,'');\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the natural frequency(in kHz) is 49.78 \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg297"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 12.2\n",
      "##calculation of natural frequency\n",
      "\n",
      "##given values\n",
      "\n",
      "t=5.5*10**-3.;##thickness in m\n",
      "d=2.65*10**3.;##density in kg/m**3\n",
      "Y=8*10**10.;##Young's modulus in N/m**2 \n",
      "\n",
      "\n",
      "##calculation\n",
      "f=(math.sqrt(Y/d))/(2.*t);##frequency in hertz\n",
      "print'%s %.2f %s'%('the natural frequency(in kHz) is',f*10**-3,'');\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the natural frequency(in kHz) is 499.49 \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg301"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "##Example 12.3\n",
      "##calculation of depth and wavelength\n",
      "\n",
      "##given values\n",
      "\n",
      "f=.07*10**6;##frequency in Hz\n",
      "t=.65;##time taken for pulse to return\n",
      "v=1700.;##velocity of sound in sea water in m/s\n",
      "\n",
      "##calculation\n",
      "d=v*t/2.;##\n",
      "print'%s %.2f %s'%('the depth of sea(in m) is',d,'');\n",
      "l=v/f;##wavelenght of pulse in m\n",
      "print'%s %.2f %s'%('wavelength of pulse (in cm)is',l*10**2,'');"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "the depth of sea(in m) is 552.50 \n",
        "wavelength of pulse (in cm)is 2.43 \n"
       ]
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}