1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
|
{
"metadata": {
"name": "",
"signature": "sha256:c0c41dd0dd6cd4e5e80827588fac9665fffcc944b50f6542bc22a982c1d29798"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 9 - A Basic Cellular System"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.2 - PG NO.315"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 315\n",
"n1=17.#\n",
"n2=16.#\n",
"n3=14.#\n",
"n4=12.#\n",
"n5=11.#\n",
"n6=10.#\n",
"n7=7.#\n",
"n8=5.#\n",
"n9=3.#\n",
"n10=2.\n",
"t1=51.#\n",
"t2=47.#\n",
"t3=43.#\n",
"t4=39.#\n",
"t5=34.#\n",
"t6=28.#\n",
"t7=22.#\n",
"t8=15.#\n",
"t9=9.#\n",
"t10=6.\n",
"\n",
"tncphr=n1+n2+n3+n4+n5+n6+n7+n8+n9+n10#no. of calls/hr.\n",
"Y=tncphr/60.#rate of calls/min.\n",
"toct=t1+t2+t3+t4+t5+t6+t7+t8+t9+t10#total system occupied time in min.\n",
"H=toct/tncphr#avg. holding time/call in min\n",
"Aav=Y*H\n",
"print '%s %.1f %s' %('average traffic intensity Aav is =',Aav,'Erlangs')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"average traffic intensity Aav is = 4.9 Erlangs\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.3 - PG NO.316"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 316\n",
"Y=2.#avg. no of calls/hr/user\n",
"Hmin=3.\n",
"H=Hmin/60.#avg. duration of a call\n",
"Aav=Y*H#average traffic intensity\n",
"print '%s %.1f %s' %('average traffic intensity per user Aav is =',Aav,' Erlangs')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"average traffic intensity per user Aav is = 0.1 Erlangs\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.4 - PG NO.316"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 316\n",
"n1=2200.#\n",
"n2=1900.#\n",
"n3=4000.#\n",
"n4=1100.#\n",
"n5=1000.#\n",
"n6=1200.#\n",
"n7=1800.#\n",
"n8=2100.#\n",
"n9=2000.#\n",
"n10=1580.#\n",
"n11=1800.#\n",
"n12=900.\n",
"TBW=30.*10.**6.#total allocated bandwidth\n",
"SBW=25000.#simplex channel bandwidth\n",
"NS=TBW/SBW#no.of simplex channels\n",
"DS=NS/2.#no.of duplex channels\n",
"NCPC=10.\n",
"NCPCL=12.\n",
"TNCC=NCPC*NCPCL##no. of control channels\n",
"TNTC=DS-TNCC#no. of traffic channels\n",
"NTCPC=TNTC/NCPCL\n",
"NUPC=8.\n",
"NMCPC=8.\n",
"TNCPC=NMCPC*NTCPC#total no. of calls/cell\n",
"print '%s %d %s' %('total no. of calls/cell =',TNCPC,'calls/cell')\n",
"H=5./100.*3600.\n",
"Y=60./3600.\n",
"Aav=H*Y#traffic intensity case(b)\n",
"print '%s %d %s' %('average offered traffic load Aav for (case(b)) is =',Aav,'Erlangs')\n",
"tc=n1+n2+n3+n4+n5+n6+n7+n8+n9+n10+n11+n12\n",
"pbms=75./100.\n",
"nbms=pbms*tc\n",
"print '%s %.3f %s' %('number of mobile subscribers/cluster = ',nbms*10**(-3),'users')\n",
"y=tc/NCPCL\n",
"Y1=y/3600.\n",
"H1=60.\n",
"Aav1=Y1*H1#traffic intensity case(c)\n",
"print '%s %d %s' %('average offered traffic load Aav for (case(c)) is =',round(Aav1),'Erlangs')\n",
"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"total no. of calls/cell = 320 calls/cell\n",
"average offered traffic load Aav for (case(b)) is = 3 Erlangs\n",
"number of mobile subscribers/cluster = 16.185 users\n",
"average offered traffic load Aav for (case(c)) is = 30 Erlangs\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.5 - PG NO.319"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 319\n",
"Y=3000./3600.\n",
"H=1.76*60.\n",
"Aav=Y*H\n",
"print '%s %.2f %s' %('offered traffic load Aav is =',Aav,'Erlangs')\n",
"Pb=2./100.\n",
"N=100.\n",
"Y1=28000./3600.\n",
"H1=105.6\n",
"Aav1=Y1*H1\n",
"N1=820.\n",
"print '%s %d %s' %('max. no of channels/cell =',N,'channels/cell')\n",
"print '%s %d %s' %('max. no of channels/cell wrt increased lambda =',N1,'channels/cell')\n",
"#answer in the textbook is less accurate due to approximations. "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"offered traffic load Aav is = 88.00 Erlangs\n",
"max. no of channels/cell = 100 channels/cell\n",
"max. no of channels/cell wrt increased lambda = 820 channels/cell\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.6 - PG NO.320"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.320\n",
"N=50.#no. of channels in cell\n",
"Pb=0.02#blocking probability\n",
"Aav=40.3#offered traffic load\n",
"H=100./3600.#average call-holding time\n",
"Y=Aav/H##no. of calls handled\n",
"print'%s %d %s' %('no. of calls handled =',Y,'calls/hr')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"no. of calls handled = 1450 calls/hr\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.7 - PG NO.320"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 320\n",
"At=0.1\n",
"Pb=0.005\n",
"N=10.\n",
"Aav=3.96\n",
"Nt=Aav/At\n",
"N1=100.\n",
"Aav1=80.9\n",
"Nt1=Aav1/At\n",
"print '%s %d %s' %('total no. of mobile users =',Nt,'users')\n",
"print '%s %d %s' %('total no. of mobile users for increased N =',Nt1,'users')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"total no. of mobile users = 39 users\n",
"total no. of mobile users for increased N = 809 users\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.8 - PG NO.321"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.321\n",
"N=40.#no. of channels in cell\n",
"Pb=0.02#blocking probability\n",
"Aav=31.#offered traffic load\n",
"H=3./60.#holding time\n",
"Z=Aav/(H*3.)#users per cell\n",
"NC=20.#no. of cells in the system\n",
"nms=NC*Z\n",
"print'%s %d %s' %('number of mobile subscribers in the system =',nms,'users')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of mobile subscribers in the system = 4133 users\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.9 - PG NO.322"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.322\n",
"N1=24.#no. of trunked channels\n",
"N=10.#10 channels trunked together\n",
"Pb=0.01#blocking probability\n",
"Aav=4.46#offered traffic load\n",
"N2=5.#2 groups of 5 trunked channels each\n",
"Aav1=1.36\n",
"Aav2=2.*Aav1\n",
"Ex=Aav2/Aav#extent\n",
"if Aav>Aav2:\n",
" print('10 channels trunked together can support more traffic at a specific GOS(say 0.01) than two 5-channel trunk individually do')\n",
"else:\n",
" print('10 channels trunked together can support less traffic at a specific GOS(say 0.01) than two 5-channel trunk individually do')\n",
"#end\n",
"\n",
"print'%s %d %s' %('\\nextent of more traffic supported by N=10 system as compared to two 5-channel trunked systems=',Ex*100,'%')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"10 channels trunked together can support more traffic at a specific GOS(say 0.01) than two 5-channel trunk individually do\n",
"\n",
"extent of more traffic supported by N=10 system as compared to two 5-channel trunked systems= 60 %\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.10 - PG NO.323"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 323\n",
"Nch=395.\n",
"ncpcl=7.\n",
"Pb=.01\n",
"N=Nch/ncpcl\n",
"H=3./60.\n",
"Aav=44.2\n",
"Y=Aav/H\n",
"print '%s %d %s' %('average number of calls/hr. i.e(omnidirectional case) Y is =',Y,'calls per hour')\n",
"\n",
"nspc=3.\n",
"Nchps=N/nspc\n",
"Aav1=11.2\n",
"avnc=Aav1/H\n",
"Y1=avnc*nspc\n",
"print '%s %d %s' %('average number of calls/hr. ie.(3-sector case) Y is =',Y1+1,'calls per hour')\n",
"DTRef=(Y-Y1)/Y\n",
"print '%s %.2f %s %d %s' %('decrease in trunking efficiency =',DTRef,'or',(DTRef+0.01)*100,'%')\n",
"\n",
"nspc1=6.\n",
"Nchps1=N/nspc1\n",
"Aav2=4.1\n",
"avnc1=Aav2/H\n",
"Y2=avnc1*nspc1\n",
"print '%s %d %s' %('average number of calls/hr. ie.(6-sector case) Y is =',Y2+1,'calls per hour')\n",
"DTRef1=(Y-Y2)/Y\n",
"print '%s %.2f %s %d %s' %('decrement in trunking efficiency =',DTRef1,'or',DTRef1*100,'%')\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"average number of calls/hr. i.e(omnidirectional case) Y is = 884 calls per hour\n",
"average number of calls/hr. ie.(3-sector case) Y is = 672 calls per hour\n",
"decrease in trunking efficiency = 0.24 or 24 %\n",
"average number of calls/hr. ie.(6-sector case) Y is = 492 calls per hour\n",
"decrement in trunking efficiency = 0.44 or 44 %\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.11 - PG NO.325"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 325\n",
"Rkm=1.4#radius of the cell\n",
"Acell=2.6*Rkm*Rkm#area (hexagonal cell)\n",
"K=4.#no.of cells/cluster\n",
"ntotal=60.\n",
"ncell=ntotal/K\n",
"avgtlpu=0.029\n",
"Aav=9.\n",
"Pb=0.05\n",
"tnu=Aav/avgtlpu#total no. of users supported in a cell\n",
"NupA=tnu/Acell\n",
"print '%s %d %s' %('number of users per kmsqr area =',NupA,'users/(km^2) (approx.)')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of users per kmsqr area = 60 users/(km^2) (approx.)\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.12 - PG NO.327"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.327\n",
"Bt=12.5*10.**6.\n",
"BtMHz=12.5\n",
"Bc=30.*10.**3.\n",
"Bg=10.**3.\n",
"Nt=(Bt-2*Bg)/Bc#total number of channels/cluster\n",
"Nc=21.\n",
"Nd=Nt-Nc#number of user data transmission/cluster\n",
"K=7.#frequency reuse factor\n",
"Ndpcell=Nd/K\n",
"Acell=6\n",
"n1=Ndpcell/(BtMHz*Acell)\n",
"print '%s %d %s' %('total number of channels/cluster (Nt) =',Nt,'channels')\n",
"print '%s %d %s' %('number of user data transmission/cluster (Nd) =',Nd,'data channels per cluster')\n",
"print '%s %d %s' %('total number of transmission/cell (Nd/cell) if K= 7 is =',Ndpcell,'data channels per cell')\n",
"print '%s %.3f %s' %('overall spectral efficiency n1 in channels/MHz/kmsqr for cell area 6kmsqr is =',n1,'channels/MHz/Km^2')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"total number of channels/cluster (Nt) = 416 channels\n",
"number of user data transmission/cluster (Nd) = 395 data channels per cluster\n",
"total number of transmission/cell (Nd/cell) if K= 7 is = 56 data channels per cell\n",
"overall spectral efficiency n1 in channels/MHz/kmsqr for cell area 6kmsqr is = 0.754 channels/MHz/Km^2\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.13 - PG NO.327"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.327\n",
"Acell=6.\n",
"Acellular=3024.\n",
"Ncells=Acellular/Acell#number of cells in the system\n",
"Bt=12.5*10.**6.\n",
"BtMHz=12.5\n",
"Bc=30.*10.**3.\n",
"Bg=10.*10.**3.\n",
"Nc=21.\n",
"Nd=((Bt-2.*Bg)/Bc)-Nc#no. of data channels/cluster\n",
"K=7.\n",
"Ndpcell=Nd/K\n",
"H=1./20\n",
"ntr=0.95\n",
"Ncallphr=1./H\n",
"Ncallphrpcell=Ndpcell*ntr*Ncallphr#number of calls per hour per cell\n",
"Ncallpuserphr=1.5\n",
"Nusers=Ncallphrpcell/Ncallpuserphr\n",
"n1=Ndpcell/(BtMHz*Acell)\n",
"n=ntr*n1\n",
"print '%s %d %s' %('number of cells in the system =',Ncells,'cells')\n",
"print '%s %d %s' %('number of calls per hour per cell =',Ncallphrpcell,'calls/hour/cell')\n",
"print '%s %d %s' %('average number of users per hour per cell =',Nusers,'users/hour/cell')\n",
"print '%s %.3f %s' %('system spectral efficiency in the units of Erlangs/MHz/kmsqr =',n,'Erlangs/MHz/km^2')\n",
"#answers in texbook are wrong due to approximations."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of cells in the system = 504 cells\n",
"number of calls per hour per cell = 1072 calls/hour/cell\n",
"average number of users per hour per cell = 714 users/hour/cell\n",
"system spectral efficiency in the units of Erlangs/MHz/kmsqr = 0.715 Erlangs/MHz/km^2\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.14 - PG NO.330"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.330\n",
"Bt=25.*10.**6.#system bandwidth\n",
"Bc=30.*10.**3.#channel bandwidth\n",
"Bg=20.*10.**3.#guard spacing\n",
"Nu=((Bt-2.*Bg)/Bc)\n",
"Tf=40.*10.**-3.#frame time\n",
"Tp=0.*10.**-3.#preamble time\n",
"Tt=0.*10.**-3.#trailer time\n",
"Ld=260.\n",
"Ls=324.\n",
"ntframe=((Tf-Tp-Tt)/Tf)*(Ld/Ls)\n",
"ntsys=ntframe*(Nu*Bc*(1./Bt))\n",
"Rs=7.95*10.**3.\n",
"ntmod=Rs/Bc\n",
"K=7.\n",
"nt=ntsys*ntmod/K\n",
"print '%s %d %s' %('number of simultaneous users that can be accomodated in each cell =',Nu,'users/cluster')\n",
"print '%s %.1f' %('spectral efficiency per frame of a TDMA system =',ntframe)\n",
"print '%s %.1f' %('spectral efficiency of the TDMA system =',ntsys)\n",
"print '%s %.3f %s' %('overall spectral efficiency in bps/Hz/cell =',nt*10,'bps/Hz/cell')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of simultaneous users that can be accomodated in each cell = 832 users/cluster\n",
"spectral efficiency per frame of a TDMA system = 0.8\n",
"spectral efficiency of the TDMA system = 0.8\n",
"overall spectral efficiency in bps/Hz/cell = 0.303 bps/Hz/cell\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.15 - PG NO.332"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 332\n",
"import math\n",
"Bc1=30.*10.**3.#\n",
"cimin1=18.\n",
"Bc2=25.*10.**3.#\n",
"cimin2=14.\n",
"Bc3=12.5*10.**3.#\n",
"cimin3=12.\n",
"Bc4=6.25*10.**3.#\n",
"cimin4=9.\n",
"Y=4.#path propogation constant\n",
"BcI=6.25*10.**3.\n",
"cieq1=cimin1+20.*math.log10(Bc1/BcI)\n",
"cieq2=cimin2+20.*math.log10(Bc2/BcI)\n",
"cieq3=cimin3+20.*math.log10(Bc3/BcI)\n",
"cieq4=cimin4+20.*math.log10(Bc4/BcI)\n",
"print'%s %.2f %s' %('(C/I)eq in dB for system I =',cieq1,'dB')\n",
"print'%s %d %s' %('(C/I)eq in dB for system II =',cieq2,'dB')\n",
"print'%s %d %s' %('(C/I)eq in dB for system III =',cieq3,'dB')\n",
"print'%s %d %s' %('(C/I)eq in dB for system IV =',cieq4,'dB')\n",
"\n",
"\n",
"if cieq1<cieq2:\n",
" if cieq1<cieq3:\n",
" if cieq1<cieq4:\n",
" print('System I offers the best capacity')\n",
" #end\n",
" #end\n",
" elif cieq2<cieq3:\n",
" if cieq2<cieq4:\n",
" if cieq2<cieq1:\n",
" print('System II offers the best capacity')\n",
" #end\n",
" #end \n",
" elif cieq3<cieq4:\n",
" if cieq3<cieq1:\n",
" if cieq3<cieq2:\n",
" print('System II offers the best capacity')\n",
" #end \n",
" #end \n",
" \n",
" elif cieq4<cieq3 :\n",
" if cieq4<cieq1:\n",
" if cieq4<cieq2:\n",
" print('System IV offers the best capacity')\n",
" #end\n",
" #end\n",
"\n",
"#end\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(C/I)eq in dB for system I = 31.62 dB\n",
"(C/I)eq in dB for system II = 26 dB\n",
"(C/I)eq in dB for system III = 18 dB\n",
"(C/I)eq in dB for system IV = 9 dB\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 9.16 - PG NO.333"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 333\n",
"Bt=12.5*10.**6.\n",
"Bc=200.*10.**3.\n",
"Ns=8.\n",
"N=Bt/Bc\n",
"Ns=8.\n",
"Nu=N*Ns\n",
"K=4.#frequency reuse factor\n",
"SysC=Nu/K#system capacity\n",
"M=(Bt/Bc)*Ns*(1./K)#system capacity using alternate method\n",
"print '%s %d %s' %('System capacity per cell is =',SysC,'users/cell')\n",
"print '%s %d %s' %('System capacity per cell,M,by using alternate method is =',M,'users/cell')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"System capacity per cell is = 125 users/cell\n",
"System capacity per cell,M,by using alternate method is = 125 users/cell\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|