1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
{
"metadata": {
"name": "",
"signature": "sha256:8f2ee048e36a112e9f429a1e72c1b5d7dac73120942146fdfdccff4032340661"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 7 - Cellular System Design Tradeoffs"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 7.7 - PG NO.195"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.195\n",
"Nmacro=7.\n",
"Nchmacro=16.\n",
"C1=Nmacro*Nchmacro#channel capacity \n",
"\n",
"Nminpmac=4.\n",
"C2=Nmacro*Nchmacro*Nminpmac\n",
"\n",
"Nmicpmin=4.\n",
"C3=Nmacro*Nchmacro*Nminpmac*Nmicpmin\n",
"\n",
"print '%s %d %s' %('channel capacity of macrocell system is =',C1,'channels')\n",
"print '%s %d %s' %('channel capacity of minicell system is =',C2,'channels')\n",
"print '%s %d %s' %('channel capacity of minicell system is =',C3,'channels')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"channel capacity of macrocell system is = 112 channels\n",
"channel capacity of minicell system is = 448 channels\n",
"channel capacity of minicell system is = 1792 channels\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 7.8 - PG NO.195"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.195\n",
"r0=2.*10.**3.\n",
"r1=1.*10.**3.\n",
"nl=4.#no. of large cells\n",
"ns=(r0/r1)**2.*nl-1.#split cells within area=split cells within square-1\n",
"ncpl=120.\n",
"n2=nl*ncpl#no. of channels without cell splitting\n",
"ncps=120.\n",
"n1=ns*ncps#no. of channels with cell splitting\n",
"inc=n1/n2#increase in the number of cells\n",
"print'%s %.2f %s' %('increase in the number of cells is =',inc,'times')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"increase in the number of cells is = 3.75 times\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 7.10 - PG NO.220"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 220\n",
"k=184.#information bits\n",
"n=224.#encoded bits\n",
"print'%s %.f %s' %('number of parity check bits is =',n-k,'bits')\n",
"r=k/n#code rate\n",
"print'%s %.2f' %('the code rate of block encoder is =',r)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of parity check bits is = 40 bits\n",
"the code rate of block encoder is = 0.82\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 7.11 - PG NO.227"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 227\n",
"nip=228.\n",
"nop=456.\n",
"cr=nop/nip\n",
"ntdma=8.#no.of TDMA blocks\n",
"nebptd=nop/ntdma#no. of bits/tdma frame\n",
"print'%s %d' %('Number of encoded data bits in each TDMA frame is =',nebptd)\n",
"ttdma=4.6*10**-3.#1 TDMA frame duration\n",
"tttdma=ntdma*ttdma\n",
"print'%s %.1f %s' %('Delay in reconstructing the codewords to the reception of 8 TDMA frames is =',tttdma*10**3,'ms')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Number of encoded data bits in each TDMA frame is = 57\n",
"Delay in reconstructing the codewords to the reception of 8 TDMA frames is = 36.8 ms\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|