1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
{
"metadata": {
"name": "",
"signature": "sha256:1d9f738ece5e9d02226f2b0a236d66afc442425e45dd750332daf1b6f8eb7528"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"CHAPTER 4 - Principles of Cellular Communication"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.1 - PG NO.101"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 101\n",
"A=140.\n",
"n=7.\n",
"Na=40.\n",
"C=A/n#coverage area of each cell\n",
"Nvchpercell=30./100.*Na\n",
"N=Nvchpercell*n#Number of voice channels\n",
"print '%s %d %s' %('coverage area of each cell =',C,'kmsqr')\n",
"print '%s %d %s' %('Number of voice channels =',N,'channels')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"coverage area of each cell = 20 kmsqr\n",
"Number of voice channels = 84 channels\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.2 - PG NO.102"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.102\n",
"K=4.\n",
"Acell=7.\n",
"Acl=K*Acell#area of cluster\n",
"Asys=1765.\n",
"Nservarea=Asys/Acl#number of clusters \n",
"N=round(Nservarea)\n",
"print'%s %d' %('Numer of times the cluster of size 4 has to be replicated is',N)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Numer of times the cluster of size 4 has to be replicated is 63\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.3 - PG NO.103"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.103\n",
"import math\n",
"N=32.\n",
"Rkm=1.6\n",
"Acell=(3.*math.sqrt(3.)/2.)*(Rkm**2.)\n",
"TA=N*Acell#total service area\n",
"Tc=336.\n",
"n=7.\n",
"Ncpc=Tc/n#number of channels per cell\n",
"TSC=Ncpc*N#total sysytem capacity\n",
"N1=128.\n",
"Ahex=TA/N1\n",
"R=math.sqrt(Ahex/(1.5*math.sqrt(2.)))\n",
"NCap=Ncpc*N1\n",
"print'%s %d %s' %('total service area is =',round(TA),'kmsqr')\n",
"print'%s %d ' %('number of channels per cell =',Ncpc)\n",
"print'%s %d %s' %('total sysytem capacity in no. of channels =',TSC,'channels')\n",
"print'%s %.2f %s' %('radius of the new smaller cell is =',R,'km')\n",
"print'%s %d %s' %('new system capacity in no. of channels',NCap,'channels')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"total service area is = 213 kmsqr\n",
"number of channels per cell = 48 \n",
"total sysytem capacity in no. of channels = 1536 channels\n",
"radius of the new smaller cell is = 0.89 km\n",
"new system capacity in no. of channels 6144 channels\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.5 - PG NO.107"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.107\n",
"N=1000.\n",
"n=20.\n",
"n1=4.\n",
"M=n/n1\n",
"TSC=N*M#system capacity\n",
"print'%s %d %s' %('the system capacity in no. of users',TSC,'users')\n",
"n2=100.\n",
"n3=4.\n",
"M1=n2/n3\n",
"NSC=N*M1#new system capacity for increased no. of cells\n",
"print'%s %d %s' %('the new system capacity for increased no. of cells in no. of users',NSC,'users')\n",
"n4=700.\n",
"n5=7.\n",
"M2=n4/n5\n",
"NSC1=N*M2#new system capacity for increased no. of cells\n",
"print'%s %d %s' %('the system capacity for increased no. of cells & also cluster size in no. of users',NSC1,'users')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the system capacity in no. of users 5000 users\n",
"the new system capacity for increased no. of cells in no. of users 25000 users\n",
"the system capacity for increased no. of cells & also cluster size in no. of users 100000 users\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.6 - PG NO.109"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.109\n",
"import math\n",
"Asys=4200.#area of system\n",
"Acell=12.#area of cell\n",
"N=1001.\n",
"K=7.\n",
"Acl=K*Acell#area of cluster\n",
"M=Asys/Acl#no. of clusters\n",
"print'%s %d %s' %('no. of clusters',M,'clusters')\n",
"J=N/K#cell capacity\n",
"print'%s %d %s' %('cell capacity is =',J,'channels/cell')\n",
"C=N*M#system capacity\n",
"print'%s %d %s' %('the system capacity in no. of channels',C,'channels')\n",
"k=4.\n",
"acl=k*Acell\n",
"m=Asys/acl\n",
"m1=math.floor(m)\n",
"print'%s %d' %('no. of clusters for reduced cluster size',m1)\n",
"c=N*m1\n",
"print'%s %d %s' %('new system capacity for reduced cluster size in no. of channels',c,'channels')\n",
"#answers vary due to approximations."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"no. of clusters 50 clusters\n",
"cell capacity is = 143 channels/cell\n",
"the system capacity in no. of channels 50050 channels\n",
"no. of clusters for reduced cluster size 87\n",
"new system capacity for reduced cluster size in no. of channels 87087 channels\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.7 - PG NO.110"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 110\n",
"n=16.\n",
"N=7.\n",
"M=12.\n",
"Ncpc=n*N#no. of channels per cluster\n",
"TSC=Ncpc*M#system capacity\n",
"print'%s %d %s' %('no. of channels per cluster is =',Ncpc,'channels/cluster')\n",
"print'%s %d %s' %('the system capacity in channels/system is =',TSC,'channels/system')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"no. of channels per cluster is = 112 channels/cluster\n",
"the system capacity in channels/system is = 1344 channels/system\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.9 - PG NO.114"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 114\n",
"i=2.#no. of cells(centre to centre) along any chain of hexagon\n",
"j=4.#no. of cells(centre to centre) in 60deg. counterclockwise of i\n",
"K=i*i+j*j+i*j#cluster size\n",
"print'%s %.f' %('no. of cells in a cluster for i=2 & j=4 is',K)\n",
"\n",
"i1=3.\n",
"j1=3.\n",
"K1=i1*i1+j1*j1+i1*j1#cluster size\n",
"print'%s %.f' %('no. of cells in a cluster for i=3 & j=3 is',K1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"no. of cells in a cluster for i=2 & j=4 is 28\n",
"no. of cells in a cluster for i=3 & j=3 is 27\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.10 - PG NO.115"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no. 115\n",
"R=.64#radius\n",
"q=12.#co-channel reuse ratio\n",
"D=q*R#nearest distance\n",
"print'%s %.2f %s' %('distance from the nearest cochannel cell is D =',D,'km')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"distance from the nearest cochannel cell is D = 7.68 km\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"EXAMPLE 4.11 - PG NO.115"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#page no.115\n",
"R=.8\n",
"D=6.4\n",
"q=D/R#frquency reuse ratio\n",
"print'%s %d' %('frquency reuse ratio q is =',q)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"frquency reuse ratio q is = 8\n"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
|