1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
{
"metadata": {
"name": "",
"signature": "sha256:98db718d0bf89da2e915ec31624499d68101b659175b122291fbf41d86cde068"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5: Fundamentals of Cellular Communications"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.1, Page 130"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"ToCH=960.;# Total available channels\n",
"Cellarea=6.; #in km^2\n",
"Covarea=2000.;#in km^2\n",
"N1=4.; # Cluster Size\n",
"N2=7.; #Cluster Size\n",
"\n",
"#Calculations\n",
"Area1=N1*Cellarea;#for N=4\n",
"Area2=N2*Cellarea;#For N=7\n",
"No_of_clusters1=round(Covarea/Area1);\n",
"No_of_clusters2=round(Covarea/Area2);\n",
"No_of_CH1=ToCH/N1; # No of channels with cluster size 4\n",
"No_of_CH2=ToCH/N2; # No of channels with cluster size 7\n",
"SysCap1=No_of_clusters1*ToCH;\n",
"SysCap2=No_of_clusters2*ToCH;\n",
"\n",
"#Results\n",
"print 'System Capacity with cluster size 4 is %d channels'%SysCap1\n",
"print 'Number of clusters for covering total area with N equals 4 are %d'%No_of_clusters1\n",
"print 'System Capacity with cluster size 7 is %d channels'%SysCap2\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"System Capacity with cluster size 4 is 79680 channels\n",
"Number of clusters for covering total area with N equals 4 are 83\n",
"System Capacity with cluster size 7 is 46080 channels\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.2, Page 132"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"S_IAMP=18.;# S/I ratio in dB\n",
"S_IGSM=12.;# S/I ratio in dB\n",
"PPL=4.; # propogation path loss coefficient\n",
"\n",
"#Calculations\n",
"# Using Equation 5.16 on page no 132, we get\n",
"N_AMP=(1./3)*((6*10**(0.1*S_IAMP))**(2/PPL));#reuse factor for AMPS\n",
" \n",
"N_GSM=(1./3)*((6*10**(0.1*S_IGSM))**(2/PPL));#reuse factor for GSM\n",
"\n",
"\n",
"#Result\n",
"print 'Reuse Factor for AMP system is N = %.3f = approx %d \\n'%(N_AMP,N_AMP+1);\n",
"print 'Reuse Factor for GSM system is N = %.3f = approx %d \\n'%(N_GSM,N_GSM+1);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Reuse Factor for AMP system is N = 6.486 = approx 7 \n",
"\n",
"Reuse Factor for GSM system is N = 3.251 = approx 4 \n",
"\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.3, Page 132"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"VCH=395.;#Total voice channels\n",
"CallHT=120.;#average call holding time in sec\n",
"Blocking=0.02;# 2%\n",
"PPL=4.; #propogation path loss coefficient\n",
"N1=4. #reuse factor\n",
"N2=7.; #reuse factor\n",
"N3=12.; #reuse factor\n",
"\n",
"#Calculations&Results\n",
"No_of_VCH1=VCH/N1; #for reuse factor N1\n",
"No_of_VCH2=VCH/N2; #for reuse factor N2\n",
"No_of_VCH3=VCH/N3; #for reuse factor N3\n",
"print 'NO of voice channels for N=4 are %d'%(round(No_of_VCH1));\n",
"print 'NO of voice channels for N=7 are %d'%(round(No_of_VCH2));\n",
"print 'NO of voice channels for N=12 are %d\\n'%(round(No_of_VCH3));\n",
"TrafLoad1=87.004;\n",
"Carryload1=(1-Blocking)*TrafLoad1;\n",
"TrafLoad2=45.877;\n",
"Carryload2=(1-Blocking)*TrafLoad2;\n",
"TrafLoad3=24.629;\n",
"Carryload3=(1-Blocking)*TrafLoad3;\n",
"# To find cell capacity\n",
"Ncall1=Carryload1*3600/CallHT;#Calls per hour per cell \n",
"Ncall2=Carryload2*3600/CallHT;\n",
"Ncall3=Carryload3*3600/CallHT;\n",
"print 'calls per hour per cell for N=4 are %d'%(round(Ncall1));\n",
"print 'calls per hour per cell for N=7 are %d'%(round(Ncall2));\n",
"print 'calls per hour per cell for N=12 are %d \\n'%(Ncall3);\n",
"# To find S BY I\n",
"# N=(1/3)[6*(S/I)]**(2/PPL)\n",
"S_I1=10*(PPL/2)*(math.log10(N1)-math.log10(1./3)-(2./PPL)*math.log10(6));#Mean S/I (dB)\n",
"\n",
"S_I2=10*(PPL/2)*(math.log10(N2)-math.log10(1./3)-(2./PPL)*math.log10(6));\n",
"S_I3=10*(PPL/2)*(math.log10(N3)-math.log10(1./3)-(2./PPL)*math.log10(6));\n",
"\n",
"print 'Mean S/I(dB) for N=4 is %.1f'%S_I1\n",
"print 'Mean S/I(dB) for N=7 is %.1f'%S_I2\n",
"print 'Mean S/I(dB) for N=12 is %.1f'%S_I3"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"NO of voice channels for N=4 are 99\n",
"NO of voice channels for N=7 are 56\n",
"NO of voice channels for N=12 are 33\n",
"\n",
"calls per hour per cell for N=4 are 2558\n",
"calls per hour per cell for N=7 are 1349\n",
"calls per hour per cell for N=12 are 724 \n",
"\n",
"Mean S/I(dB) for N=4 is 13.8\n",
"Mean S/I(dB) for N=7 is 18.7\n",
"Mean S/I(dB) for N=12 is 23.3\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.4, Page 154"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"spectrum=12.5*10**6; #in Hz\n",
"CHBW=200*10**3;#in Hz\n",
"N=4.;#reuse factor\n",
"Blocking=0.02; # 2%\n",
"callHT=120.;#average call holding time in sec\n",
"PPL=4.;#propogation path loss coefficient\n",
"CntrlCH=3.; #No of control channels\n",
"Ts=8.; # No of voice channels per RF channel\n",
"\n",
"#Calculations&Results\n",
"No_ofVCH=((spectrum*Ts)/(CHBW*N))-CntrlCH;\n",
"print 'No of voice channels for N=4 are %d'%(No_ofVCH)\n",
"TrafLoad=110.;\n",
"CarryLoad=(1-Blocking)*TrafLoad;\n",
"Ncall=CarryLoad*3600/callHT;\n",
"print 'Calls per hour per cell for N=4 are %d calls/hour/cell \\n '%(round(Ncall));\n",
"S_I=10*(PPL/2)*(math.log10(N)-math.log10(1./3)-(2./PPL)*math.log10(6));\n",
"print 'Mean S/I(dB) for N=4 is %.1f dB \\n '%(S_I)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"No of voice channels for N=4 are 122\n",
"Calls per hour per cell for N=4 are 3234 calls/hour/cell \n",
" \n",
"Mean S/I(dB) for N=4 is 13.8 dB \n",
" \n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.5, Page 139"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"VCH=395.;#Total allocated voice channels\n",
"CHBW=30.; # in kHz\n",
"Spectrum=12.5; # in MHz\n",
"CallHT=120.; #Average call holding time in sec\n",
"Blocking=0.02; # 2%\n",
"PL=40.; #slope of path loss in dBperdecade\n",
"\n",
"#Calculations&Results\n",
"print \"We consider only the \ufb01rst tier interferers and neglect the effects of cochannel interference from the second and other higher tiers.\"\n",
"#FOR 120degree sectorization\n",
"#N=4\n",
"VCH11=(VCH/(4*3));\n",
"OffLoad11=24.629; # Offered traf\ufb01c load per sector from Erlang-B table(Appendix A)\n",
"Load_site11=3*OffLoad11;\n",
"CarLoad11=(1-Blocking)*Load_site11;\n",
"Calls_hr_site11=CarLoad11*3600/CallHT;\n",
"R11=math.sqrt(CarLoad11/0.52);\n",
"Seff11=CarLoad11/(2.6*Spectrum*R11**2);\n",
"S_I11=PL*math.log10(math.sqrt(3*4))-10*math.log10(2);\n",
"#N=7\n",
"VCH12=(VCH/(3*7));\n",
"OffLoad12=12.341; # Offered traf\ufb01c load per sector from Erlang-B table(Appendix A)\n",
"Load_site12=3*OffLoad12;\n",
"CarLoad12=(1-Blocking)*Load_site12;\n",
"Calls_hr_site12=CarLoad12*3600/CallHT;\n",
"R12=math.sqrt(CarLoad12/0.52);\n",
"Seff12=CarLoad12/(2.6*Spectrum*R12**2);\n",
"S_I12=PL*math.log10(math.sqrt(3*7))-10*math.log10(2);\n",
"#N=12\n",
"VCH13=VCH/(3*12);\n",
"OffLoad13=5.842; # Offered traf\ufb01c load per sector from Erlang-B table(Appendix A)\n",
"Load_site13=3*OffLoad13;\n",
"CarLoad13=(1-Blocking)*Load_site13;\n",
"Calls_hr_site13=CarLoad13*3600/CallHT;\n",
"R13=math.sqrt(CarLoad13/0.52);\n",
"Seff13=CarLoad13/(2.6*Spectrum*R13**2);\n",
"S_I13=PL*math.log10(math.sqrt(3*12))-10*math.log10(2);\n",
"#For omnidirectional \n",
"#N=4\n",
"VCH21=VCH/(4);\n",
"OffLoad21=87.004; # Offered traf\ufb01c load per sector from Erlang-B table(Appendix A)\n",
"Load_site21=OffLoad21;\n",
"CarLoad21=(1-Blocking)*Load_site21;\n",
"Calls_hr_site21=CarLoad21*3600/CallHT;\n",
"R21=math.sqrt(CarLoad21/0.52);\n",
"Seff21=CarLoad21/(2.6*Spectrum*R21**2);\n",
"S_I21=PL*math.log10(math.sqrt(3*4))-10*math.log10(6);\n",
"#N=7\n",
"VCH22=VCH/(7);\n",
"OffLoad22=46.817; # Offered traf\ufb01c load per sector from Erlang-B table(Appendix A)\n",
"Load_site22=OffLoad22;\n",
"CarLoad22=(1-Blocking)*Load_site22;\n",
"Calls_hr_site22=CarLoad22*3600/CallHT;\n",
"R22=math.sqrt(CarLoad22/0.52);\n",
"Seff22=CarLoad22/(2.6*Spectrum*R22**2);\n",
"S_I22=PL*math.log10(math.sqrt(3*7))-10*math.log10(6);\n",
"#N=12\n",
"VCH23=VCH/(12);\n",
"OffLoad23=24.629; # Offered traf\ufb01c load per sector from Erlang-B table(Appendix A)\n",
"Load_site23=OffLoad23;\n",
"CarLoad23=(1-Blocking)*Load_site23;\n",
"Calls_hr_site23=CarLoad23*3600/CallHT;\n",
"R23=math.sqrt(CarLoad23/0.52);\n",
"Seff23=CarLoad23/(2.6*Spectrum*R23**2);\n",
"S_I23=PL*math.log10(math.sqrt(3*12))-10*math.log10(6);\n",
"# For 60degree Sectorization\n",
"#N=3\n",
"VCH31=VCH/(6*3);\n",
"OffLoad31=14.902; # Offered traf\ufb01c load per sector from Erlang-B table(Appendix A)\n",
"Load_site31=6*OffLoad31;\n",
"CarLoad31=(1-Blocking)*Load_site31;\n",
"Calls_hr_site31=CarLoad31*3600/CallHT;\n",
"R31=math.sqrt(CarLoad31/0.52);\n",
"Seff31=CarLoad31/(2.6*Spectrum*R31**2);\n",
"S_I31=PL*math.log10(math.sqrt(3*3))-10*math.log10(1);\n",
"#N=4\n",
"VCH32=VCH/(6*4);\n",
"OffLoad32=10.656; # Offered traf\ufb01c load per sector from Erlang-B table(Appendix A)\n",
"Load_site32=6*OffLoad32;\n",
"CarLoad32=(1-Blocking)*Load_site32;\n",
"Calls_hr_site32=CarLoad32*3600/CallHT;\n",
"R32=math.sqrt(CarLoad32/0.52);\n",
"Seff32=CarLoad32/(2.6*Spectrum*R32**2);\n",
"S_I32=PL*math.log10(math.sqrt(3*4))-10*math.log10(1);\n",
"#N=7\n",
"VCH33=VCH/(6*7);\n",
"OffLoad33=5.084; # Offered traf\ufb01c load per sector from Erlang-B table(Appendix A)\n",
"Load_site33=6*OffLoad33;\n",
"CarLoad33=(1-Blocking)*Load_site33;\n",
"Calls_hr_site33=CarLoad33*3600/CallHT;\n",
"R33=math.sqrt(CarLoad33/0.52);\n",
"Seff33=CarLoad33/(2.6*Spectrum*R33**2);\n",
"S_I33=PL*math.log10(math.sqrt(3*7))-10*math.log10(1);\n",
"#N=12\n",
"VCH34=VCH/(6*12);\n",
"OffLoad34=2.227; # Offered traf\ufb01c load per sector from Erlang-B table(Appendix A)\n",
"Load_site34=6*OffLoad34;\n",
"CarLoad34=(1-Blocking)*Load_site34;\n",
"Calls_hr_site34=CarLoad34*3600/CallHT;\n",
"R34=math.sqrt(CarLoad34/0.52);\n",
"Seff34=CarLoad34/(2.6*Spectrum*R34**2);\n",
"S_I34=PL*math.log10(math.sqrt(3.*12))-10*math.log10(1);\n",
"\n",
"print 'For Omnidirectional Calls_per_hour_per_cellsite Mean S_I ratio SpecrtalEfficiency'\n",
"print 'For N=4 %d %.1f %.3f\\n'%(Calls_hr_site21,S_I21,Seff21);\n",
"print 'For N=7 %d %.1f %.3f\\n'%(Calls_hr_site22,S_I22,Seff22);\n",
"print 'For N=12 %d %.1f %.3f\\n'%(Calls_hr_site23,S_I23,Seff23);\n",
"\n",
"print 'For 120deg sector Calls_per_hour_per_cellsite Mean S_I ratio SpecrtalEfficiency\\n'\n",
"print 'For N=4 %d %.1f %.3f\\n'%(Calls_hr_site11,S_I11,Seff11);\n",
"print 'For N=7 %d %.1f %.3f\\n'%(Calls_hr_site12,S_I12,Seff12);\n",
"print 'For N=12 %d %.1f %.3f\\n'%(Calls_hr_site13,S_I13,Seff13);\n",
"\n",
"print 'For 60 deg Sector Calls_per_hour_per_cellsite Mean S_I ratio SpecrtalEfficiency\\n'\n",
"print 'For N=3 %d %.1f %.3f\\n'%(Calls_hr_site31,S_I31,Seff31);\n",
"print 'For N=4 %d %.1f %.3f\\n'%(Calls_hr_site32,S_I32,Seff32);\n",
"print 'For N=7 %d %.1f %.3f\\n'%(Calls_hr_site33,S_I33,Seff33);\n",
"print 'For N=12 %d %.1f %.3f\\n'%(Calls_hr_site34,S_I34,Seff34);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"We consider only the \ufb01rst tier interferers and neglect the effects of cochannel interference from the second and other higher tiers.\n",
"For Omnidirectional Calls_per_hour_per_cellsite Mean S_I ratio SpecrtalEfficiency\n",
"For N=4 2557 13.8 0.016\n",
"\n",
"For N=7 1376 18.7 0.016\n",
"\n",
"For N=12 724 23.3 0.016\n",
"\n",
"For 120deg sector Calls_per_hour_per_cellsite Mean S_I ratio SpecrtalEfficiency\n",
"\n",
"For N=4 2172 18.6 0.016\n",
"\n",
"For N=7 1088 23.4 0.016\n",
"\n",
"For N=12 515 28.1 0.016\n",
"\n",
"For 60 deg Sector Calls_per_hour_per_cellsite Mean S_I ratio SpecrtalEfficiency\n",
"\n",
"For N=3 2628 19.1 0.016\n",
"\n",
"For N=4 1879 21.6 0.016\n",
"\n",
"For N=7 896 26.4 0.016\n",
"\n",
"For N=12 392 31.1 0.016\n",
"\n"
]
}
],
"prompt_number": 22
}
],
"metadata": {}
}
]
}
|