1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
|
{
"metadata": {
"name": "",
"signature": "sha256:f32dec82dcc091d4a1d388fd0afce868d4917308e897fe0d3ace9d832db79571"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3: Radio Propagation and Propagation Path-Loss Models"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1, Page 51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"hb=100; #in feets(height of BS antenna)\n",
"hm=5; # in feets(height of mobile antenna)\n",
"f=881.52;#in MHz\n",
"lamda=1.116; #in feet\n",
"d=5000; #in feet\n",
"Gb=10**0.8; #8dB(BS antenna gain)\n",
"Gm=10**0; # 0dB (Mobile antenna gain)\n",
"\n",
"#Calculations&Results\n",
"free_atten=(4*math.pi*d/lamda)**2*(Gb*Gm)**-1;\n",
"y=round(10*math.log10(free_atten));\n",
"print 'Free space attenuation is %d dB \\n'%y\n",
"reflect_atten= (d**4/(hb*hm)**2)*(Gb*Gm)**-1;\n",
"x=round(10*math.log10(reflect_atten));\n",
"print 'Reflecting surface attenuation is %d dB \\n '%x"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Free space attenuation is 87 dB \n",
"\n",
"Reflecting surface attenuation is 86 dB \n",
" \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2, Page 52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"d=8000; #Distance between base station and mobile station\n",
"f=1.5*10**9;#in Hz \n",
"lamda=0.2; #in metres\n",
"Pt=10; #BS transmitted power in watts\n",
"Lo=8; #Total system losses in dB\n",
"Nf=5; #Mobile receiver noise figure in dB\n",
"T=290; #temperature in degree kelvin\n",
"BW=1.25*10**6; #in Hz\n",
"Gb=8; #in dB\n",
"Gm=0; #in dB\n",
"Hb=30; #in metres\n",
"Hm=3.; #in metres\n",
"B=1.38*10**-23; #Boltzmann's constant\n",
"\n",
"#Calculations&Results\n",
"Free_Lp=20*math.log10(Hm*Hb/d**2);\n",
"Pr=Free_Lp-Lo+Gm+Gb+Pt; #in dBW\n",
"Te=T*(3.162-1);\n",
"Pn=B*(Te+T)*BW;\n",
"print 'Received signal power is %d dBW \\n'%(10*math.log10(Pn))\n",
"SNR=Pr-10*math.log10(Pn);\n",
"print 'SNR ratio is %d dB \\n'%(round(SNR))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Received signal power is -138 dBW \n",
"\n",
"SNR ratio is 31 dB \n",
"\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3, Page 58"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"d=3*1000;#in metres\n",
"Y=4;# path loss exponent\n",
"Pt=4; #Transmitted power in watts\n",
"f=1800*10**6;#in Hz\n",
"Shadow=10.5; #in dB\n",
"d0=100.;#in metres\n",
"P0=-32; #in dBm\n",
"\n",
"#Calculations&Results\n",
"print \"Using equation 3.11 and including shadow effect we get\"\n",
"Pr=P0+10*Y*math.log10(d0/d)+Shadow;\n",
"print 'Received power is %.1f dBm \\n'%Pr\n",
"path_loss=10*math.log10(Pt*1000)-Pr;\n",
"print 'Allowable path loss is %.1f dB \\n'%path_loss"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Using equation 3.11 and including shadow effect we get\n",
"Received power is -80.6 dBm \n",
"\n",
"Allowable path loss is 116.6 dB \n",
"\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4, Page 58"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"shadow=10.; #in dB\n",
"Lp=150; #in dB\n",
"\n",
"#Calculations&Results\n",
"print \"Using equation given in Problem i.e Lp=133.2+40*math.log(d) we get,\"\n",
"d=10**((Lp-10-133.2)/40);\n",
"print \"Separation between transmitter and receiver as %.2f km\"%d"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Using equation given in Problem i.e Lp=133.2+40*math.log(d) we get,\n",
"Separation between transmitter and receiver as 1.48 km\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5, Page 61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"v=60*0.44704; #.. mph to mps\n",
"fc=860*10**6;#in Hz\n",
"td=2*10**-6; #RMS delay spread in sec\n",
"c=3.*10**8;# speed of light in m/sec\n",
"Rs=19200.; #Coded symbol rate in bps\n",
"\n",
"#Calculations&Results\n",
"lamda=c/fc;\n",
"fm=v/lamda; #Maximum doppler shift\n",
"tc=1/(2*math.pi*fm);#Channel coherence time\n",
"print 'Channel coherence time is %.4f sec \\n'%tc\n",
"ts=1/Rs; #symbol interval\n",
"print 'Symbol interval is %d microsec \\n'%(ts*10**6);\n",
"print \"As the symbol interval is much smaller compared to the channel coherence time. So, Symbol distortion is minimal and fading is slow.\";\n",
"print \"\";\n",
"Bc=1/(2*math.pi*td);\n",
"print 'Coherence Bandwidth is %.2f kHz \\n'%(Bc/1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Channel coherence time is 0.0021 sec \n",
"\n",
"Symbol interval is 52 microsec \n",
"\n",
"As the symbol interval is much smaller compared to the channel coherence time. So, Symbol distortion is minimal and fading is slow.\n",
"\n",
"Coherence Bandwidth is 79.58 kHz \n",
"\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6, Page 65"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"p=1;# re\ufb02ection coef\ufb01cient of ground \n",
"c=3.*10**8;# velocity of light in free space(m/sec)\n",
"e=2.71828;#Euler's number\n",
"fm=20; #in Hz\n",
"fc=900*10**6; #carrier frequency in Hz\n",
"\n",
"#Calculations&Results\n",
"Nr=math.sqrt(2*math.pi)*fm*p*e**-(p**2);\n",
"print 'NO of fades per second are %.2f \\n'%Nr\n",
"Afd=e**-(p**2)/(p*fm*math.sqrt(2*math.pi));\n",
"print 'Average fade duration is %.4f sec \\n '%Afd\n",
"v=fm*c/fc;\n",
"print 'Maximum velocity of mobile is %.2f m/sec = %d Km/hour \\n'%(v,v*18/5);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"NO of fades per second are 18.44 \n",
"\n",
"Average fade duration is 0.0073 sec \n",
" \n",
"Maximum velocity of mobile is 6.67 m/sec = 24 Km/hour \n",
"\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7, Page 70"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"%matplotlib inline\n",
"\n",
"#Variable declaration\n",
"d=np.array([1, 2, 3, 4, 5]); #in km\n",
"hb=30; #Height of BS antenna in metres\n",
"hm=2;# height of mobile antenna in matres\n",
"fc=900;#carrier frequency in MHz\n",
"W=15; #street width(m)\n",
"b=30; # distance between building along radio path (m) \n",
"phi=90; # incident angle relative to the street\n",
"hr=30; #in m\n",
"\n",
"#Calculations\n",
"dellhm=hr-hm;\n",
"#L50=Lf+Lrts+Lms\n",
"\n",
"# By COST 231 model\n",
"Lf=32.4+20*np.log10(d)+20*np.log10(fc);\n",
"L0=4-0.114*(phi-55);\n",
"Lrts=-16.9-10*math.log10(W)+10*math.log10(fc)+20*math.log10(dellhm)+L0;\n",
"Lbsh=-18*math.log10(11);\n",
"ka=54-0.8*hb;\n",
"dellhb=hb-hr;\n",
"kd=18-15*dellhb/dellhm;\n",
"kf=4+0.7*(fc/925-1);\n",
"Lms=Lbsh+ka+kd*np.log10(d)+kf*np.log10(fc)-9*np.log10(b);\n",
"L50=np.array([0, 0, 0, 0, 0])\n",
"L50=Lf+Lrts+Lms;\n",
"\n",
"#Okumura/Hata model\n",
"ahm=(1.1*math.log10(fc)-0.7)*hm-(1.56*math.log10(fc)-0.8);\n",
"L_50=69.55+26.16*np.log10(fc)+(44.9-6.55*np.log10(hb))*np.log10(d)-13.82*np.log10(hb)-ahm;\n",
"L_50 = np.array(L_50)\n",
"\n",
"#Results\n",
"fig,ax1 = plt.subplots()\n",
"ax1.plot(d,L_50,'b-')\n",
"ax1.set_xlabel('Distance from transmitter(in km)')\n",
"ax1.set_ylabel('Path loss (in dB)')\n",
"ax2 = ax1.twinx()\n",
"ax2.plot(d,L50,'r')\n",
"ax1.legend(['COST 231 model'],loc=0)\n",
"ax2.legend(['HATA model'],loc=0)\n",
"ax1.grid()\n",
"plt.show()\n",
"print \"L50 values by Cost 231 model\"\n",
"print '%.2f %.2f %.2f %.2f %.2f \\n '%(L50[0],L50[1],L50[2],L50[3],L50[4]);\n",
"print \"L50 values bu Okumura/Hata model\"\n",
"print '%.2f %.2f %.2f %.2f %.2f \\n '%(L_50[0],L_50[1],L_50[2],L_50[3],L_50[4]);\n",
"print \"The results from the plot of two models shows that the calculated path loss with the COST 231 model is higher than the value obtained by the Okumura/Hata model.\"\n",
"\n",
"#Answers vary due to built-in functions of Python used"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXd4VNXWh1+KNCkJUqRHBMEGiIUugU+6AlIEFDTCBTWK\nCl4LKk1RAQW8oIgiCAQBQZCO9NAE6R1pCtJ7h0DK+f5YZ5LJZGYyCdNOst7nOU9OP7/sTM6avdbe\na4GiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIrfGQucAnbY7esHHAW2mEsTu2O9gP3A\nX0BD/0hUFEXJlDh7PwN0B/YAO4FBdvuD5v1cB3iE5ML7Aj2dnPsAsBW4AwgDDgBZfaxPURQls+Ls\n/VwPWIy8hwEKmz/T/H725ct7FXDByf4sTva1ACYDscAhRPgTPlOmKIqSuXH2fn4N+AJ5DwOcMX+m\n+f0ciF5Bd2AbMAYIMfcVR1xkNo4CJfysS1EUJTNTHngSWAdEA4+Z+9P8fva3YfkOuAeoApwAhrg5\n1/CLIkVRFAUgOxAKVAfeBaa6Odft+zm7F0V5wmm79R+BOeb6MaCU3bGS5r5kFC9e3Dh+/Ljv1CmK\nomRMDgLlUjnnKDDDXN8AJACF8PD9bI+/eyzF7NafJSlwNBtoD+RAejTlgfWOFx8/fhzDMIJ+6du3\nb8A1qE7VqTpV4+nTBsOHGwD3evB+ngnUN9fvM9/HZz19P9vjyx7LZKAuYvGOICPCwhE3mAH8A7xi\nnrsb6XbtBuKASCzsCjt06FCgJXiE6vQuqtO7WEFnMGqMiYHZsyEqClatgqefdnqa7f18F/J+7oMM\nQR6LfOG/Bbxonpvm97MvDUsHJ/vGujn/c3NRFEVR0kBCAqxeLcZk+nR49FHo1AkmT4a8eeHnn1Nc\n4uz9DNDJxf40vZ/9HWPJFERERARagkeoTu+iOr2LFXQGWuPevWJMJk6EfPnEmGzfDiVLBlSW0zkl\nwYxhGJb1kCmKotw2Z8/ClCliUP79F55/XgxK5cqQxcUbPYscsNr73m8YzggNDTUQn58uuqRpCQ0N\ndfqZSg/Lly/32r18iTOd+j+UMRZXn2fzuN/IEK6wCxcuYGhPRkkHWVx9xctk6P9QxiBYPs/BocJz\nDGcf/ixZsug/hZIu9LMjaDtkDFz9Hf3tCtNEj4qiKIpXUcOiKF4iOjo60BI8wio6FeuihkWxLOPG\njaNOnToenRsREUHv3r19rEhR0k9aPqNhYWEsXbrUx4rSjxoWPzFp0iQee+wx8uXLR/HixWnatClr\n1qxJPL57926aN29OSEgI+fPnp379+qxduzbZPcaMGcP9999P/vz5ufvuu2nWrBlXr16lSZMm5MuX\nj3z58pEjRw5y5syZuB0ZGZlCy7x586hduzahoaEUK1aMrl27cvXq1cTj7733HqVLlyZ//vyULFmS\nnj17EhcXl3i8W7duVKxYkWzZsjF+/HgftJb3yZIli88Dm+Hh4T69v7ewik4bzl6irr5UhIeHU7Bg\nQWJjJfP7q6++mvi/kDNnTnLkyJG43axZMwAMw6Bs2bI8+OCDvv9l3JCWz6g/Ps+3gxoWPzB06FB6\n9OjBxx9/zOnTpzly5Aivv/46s2fPBuDgwYPUqlWLypUrc+jQIU6cOMGzzz5Lw4YNWbduHQArVqzg\no48+YsqUKVy+fJk9e/bQvn17ABYsWMCVK1e4cuUKL7zwAu+//37i9siRI1PouXz5Mn369OHEiRPs\n2bOHY8eO8e677yYe79KlC7t37+by5cusX7+eRYsW8eOPPyYer1KlCiNHjqRq1apB/eF2RIPT1sTT\nl+ihQ4dYv349RYoUYdasWQCMGjUq8X/hww8/pH379onb8+bNA2DlypXcvHmTM2fOsHHjRp/+LqmR\nUT6jalh8zKVLl+jbty8jR46kZcuW5M6dm2zZstGsWTMGDZLKn/369aNWrVp8+umnhISEcOedd9K9\ne3c6derE+++/D8CGDRuoUaMGlStXBiA0NJROnTqRN2/eFM9M7cPZoUMHGjZsSK5cuQgJCaFr167J\nek8VKlRIvK9hGGTNmpVixZLyh0ZGRlK/fn1y5cqV6u8fERFBZGQkTZs2JV++fNSpU4eTJ0/y1ltv\nERoayv3338/WrVsTz9+zZw/h4eGEhoby0EMPMWfOnMRj586do3nz5hQoUIBq1apx8ODBZM/666+/\naNCgAXfddRcVK1Zk2rRpqerzJlaJXVhFpzucGZoJEybw1FNP0alTJ6c9acNMzOjI+PHjad26NS1a\ntEi1Bx4WFsZXX31FpUqVyJcvH126dOHUqVM0adKEAgUK0KBBAy5evJh4/uzZs3nwwQcJDQ2lXr16\n/PXXX4nHtmzZQtWqVcmfPz/t27cnJiYm2bPmzp1LlSpVCA0NpVatWuzY4VhFOHhRw+Jj1q5dS0xM\nDM8++6zLc5YsWULbtm1T7G/bti1r1qzh5s2bVK9enYULF9KvX7/Efd5ixYoVPPTQQ8n2DRw4kHz5\n8lGqVCmefvppWrRoke77T5s2jc8++4yzZ8+SI0cOqlevzuOPP8758+dp06YNPXtKterY2FieeeYZ\nGjduzJkzZxgxYgQvvPAC+/btA+D1118nT548nDx5krFjx/LTTz8lvmCuXbtGgwYN6NixI2fOnGHK\nlClERkayZ8+edOtWggdHg+DMQEyYMIF27drx3HPPsXDhQk6fPp3iHEeuX7/O9OnTE6+bMmVKohvN\nGVmyZGHGjBksXbqUvXv3MnfuXJo0acLAgQM5ffo0CQkJDB8+HIB9+/bx/PPPM3z4cM6ePUvTpk15\n5plniIuL49atW7Rs2ZKXXnqJCxcu0LZtW6ZPn574ed6yZQtdunRh9OjRnD9/nldeeYXmzZu71aak\nH5ezSlMDvLOklYkTJxp3332323OyZ89uLFy4MMX+PXv2GFmyZDGOHz9uGIZhLFiwwHjmmWeMkJAQ\nI2/evEbPnj2N+Pj4ZNdEREQYH3/8scf6Fi1aZISGhhr79+93enzz5s1G6dKljenTp6c4Vrt2bWP8\n+PFu7x8REWF069YtcXvEiBHGAw88kLi9fft2IyQkxDAMw1i5cmWKturQoYPRr18/Iy4uzrjjjjuM\nvXv3Jh778MMPjdq1axuGYRhTpkwx6tSpk+zabt26Gf3790/U4axdPPnsZAZSbYdA/QMZhlGmTBkj\nb968RkhISOKSJ0+eZH/vVatWGbly5TIuX75sGIZhVK5c2Rg2bFiy+/Tt29fo2LFjsn1RUVFGyZIl\nDcMwjLi4OKNQoULGb7/95lJLWFiYMWnSpMTt1q1bG5GRkYnbI0aMMFq2bGkYhmF88sknRrt27RKP\nJSQkGCVKlDCio6ONFStWGMWLF09275o1axq9e/c2DMMwXn311cR1GxUqVDBWrlyZqGPp0qUp9Ll7\nR/rzRZ1peize+s9IK3fddRdnz54lISHB5TmFChXCWQGzEydOkDVrVkJDQwFo3Lgxs2fP5sKFC8ya\nNYtx48Yli32klXXr1vHCCy8wffp0ypVzXgPokUceITIykqioqHQ/p0iRIonruXLlSradO3fuxIED\nx48fp1SpUsmuLVOmDMePH+fs2bPExcUlO166dOnE9cOHD/Pnn38SGhqauEyaNIlTp06lW7diR6D+\ngZBewqxZs7hw4ULiMnLkyGS9lvHjx9OwYUPy5csHSG/fk4El48ePp1WrVgBky5aNli1bpnpd0aJF\nE9dz586dbDtXrlzJPs/2n9EsWbJQqlQpjh07xokTJyhRInl13zJlyiSuHz58mCFDhiT7PB89etTp\neyIYyRApXYKZGjVqkDNnTn777Tdat27t9JynnnqKadOmpciUOnXqVGrWrOk0llG/fn3q16/Prl27\n0qVry5YttGjRgnHjxlGvXj2358bGxnLnnXem6zlpoXjx4hw5cgTDMBJdAocPH6ZixYoULlyY7Nmz\n8++//1KhQgUA/v3338RrS5cuTd26dVm0aJHPdboiOjraEiOurKLTHfZG5caNG0ydOpWEhITEWODN\nmze5ePEi27dvp1KlSkDKuMzRo0dZtmwZGzZsYOpUqcJ7/fp1YmJiOHfuHHfddVeatdhTokSJZHER\nwzA4cuQIJc3Uw8eOJS/CePjw4cQveKVLl+ajjz7iww8/9EhDsJFpeiyBokCBAnzyySe8/vrrzJo1\ni+vXrxMbG8uCBQsSA/N9+/bljz/+4OOPP+bChQtcuXKFESNGEBUVlRjgnz17Nr/88ktiTqf169ez\nYsUKqlevnux5rj7k9uzcuZPGjRvzzTff0LRp0xTXf//991y8eDHxOSNHjkz8VgdiaGJiYkhISODW\nrVvExMS4fK4nemxUq1aNPHnyMHjwYGJjY4mOjmbu3Lm0b9+erFmz0qpVK/r168eNGzfYvXs348eP\nT3xZNGvWjH379jFx4kRiY2OJjY1lw4YNicHStOhQrMXMmTPJnj07e/bsYdu2bWzbto09e/ZQp04d\nJkyYkHie42cgKiqKihUrsm/fvsTr9u3bR8mSJZk8efJt62rbti3z5s1j2bJlxMbGMmTIEHLlykXN\nmjWpXr062bNnZ/jw4cTGxjJjxgw2bNiQeG3Xrl0ZNWoU69evxzAMrl27xrx585JNCwhm1LD4gZ49\nezJ06FAGDBhAkSJFKF26NCNHjkwM6JcrV47Vq1ezbds2wsLCKF68OL/99huLFi2iRo0agIwCGz16\nNPfddx8FChSgU6dOvPfee3TokLxejydDM4cOHcq5c+fo3Llz4pj+hx9+GJB/vpkzZ3LvvfdSoEAB\nunTpwoABA5IZlgYNGpAnTx7WrVtHt27dyJMnD6tWrXL6LEc9zvTZtnPkyMGcOXNYsGABhQsX5o03\n3iAqKor77rsPgG+++YarV69y991307lzZzp37px4j3z58rFo0SKmTJlCiRIlKFasGL169eLWrVse\nt8vtYpVegFV0usP+7zlhwgQ6d+5MyZIlKVKkCEWKFKFo0aK88cYbTJo0KdEN7fgZmDBhApGRkYnX\n2K579dVXkxkkT7Q401WhQgUmTpxI9+7dKVy4MPPmzWPOnDlkz56dHDlyMGPGDMaNG8ddd93F1KlT\nk3k0Hn30UUaPHs0bb7xBwYIFKV++PBMmTLDM8H5rqEzCcPbNUxPoKelFPzuCtkPGQJNQKkoGwyrz\nQ6yiU7EualgURVEUr6KuMCVTo58dQdshY6CuMEVRFCVDooZFUbyEVWIXVtGpWBc1LIqiKBmRK1dg\n1ix47TVnR8cCpwD7zJb9gKPAFnNpbO4PA27Y7U+ZMt2BDDHzPjQ01DLju5XgwpYuxxtYZX6IM536\nP5QxCC1QAAYNgt9/h40boXp1aNTI2ak/ASMA+wk7BjDUXBw5ADziqY4MYVjOnz8faAmKYmms8D90\n6RJMmwZRUbB7Nzz3HHTqBNWqQaa1iefOweLFYkgWLoS8eeHoUfjvfyE8HGypmOzqLZmsQnoijnil\nJdUV5gOs4sNWnd5FdXqX6OhoYmNh7lxo1w7KlIEFC6BHDzh2DL79Vr6QB9Ko+L0t4+Nh7Vro21cs\natmyMGkSPPEErF4N+/fDiBHQrFmSUUkb3YFtwBggxG7/PYgbLBqondpNMkSPRVGUjMXmzfJ+bNcO\nypWDF1+E776DggUDrSwAHD8uvZHff4clS6BkSWjcGL74AmrVgpw5U1wSHR2dHqP3HfCJuf4pMATo\nAhwHSgEXgKrATOBB4IqrG1mtA+l0HouiKNbHMOT9OXAgHDoEL78MHTvCvfcGWpmfuXkT1qwRQ/L7\n7+LaatBAjEnDhuCQbt8TXMxjCQPmAA87ucTdseXAO8BmV8/THouiKAElLg5+/VUMSnw8fPCB9FSy\nZ6a308GDSXGSFSvg/vvFkHz/PTz+uL8aoxhwwlx/lqQRY4WQ3ko8UBYoD/zt7kYaY/EBVvJhWwHV\n6V2CRWdMjLw3K1SQeMlnn8H27fDCC/IeDRad7ki3xmvXYN486N4dypeH2rVhwwZ4/nn4+29Ytw76\n9YMaNXxlVCYDfwAVgCNAZ2AQsB2JsdQFepjnPmnu2wJMA14BLrq7eWb6TqAoShBw6RKMGgVffw2P\nPgrjx8t7NUNjGLBrV5J7688/4bHHpFfy669QqZK/RyF0cLJvrItzZ5iLx2iMRVEUv3DyJPzvf/DD\nD9CkCbz3nrxPMywXLsDSpUnG5I475Bdv3Bjq1QOzjLI/8HeuMO2xKIriU/7+G776CqZMEU/Pxo1w\nzz2BVuUDEhJg06YkQ7J9O9SpI4bkvffE5ZVJJtxojMUHWME3DKrT26jO5GzbJobkiScgNBT++gu+\n+cZzo2KF9vxjxgyYMEECQ0WLQkQEXLwo8ZEzZ2D+fHjzTbjvvkxjVEB7LIqieBHDkHl6AwfCli0y\nmXHUKMifP9DKvERsrExQNHslj+/fLylTGjWSeSWlSwdaYVDgSxM6FmgGnCblWOh3gC+RYWznkTHT\ne4C/zONrgUgn99QYi6IEIQkJMshp4EA4fVo8P506Qa5cgVbmBQ4dSpqguHy5zNhs3FiWatUkdhLk\nZKQYi7MkZyAzOBsAhx32pynJmaIogSc2VmIngwZBjhwyB6V1a8iWLdDKboMbN2Quic2YnDsnPZI2\nbWR8dJEigVYY9PgyxrIKmVTjyFDgPR8+N+BYwTcMqtPbZCad169LvKR8efjpJxg6VOLWzz3nPaPi\nt/Y0DAkAff219EKKFIHPP4dChWDiRBnOFhUlcRQHo2KVv7m/8XeMpQWS73+7k2O2JGeXgI+B1X7U\npSiKB1y4IJMZR4yAmjWlt1K9eqBVpYPLl5OGAi9cKL68xo2hWzf45RcoUCDQCi2NPw1LHuBDxA1m\nw+bz8zjJWUREBGFhYQCEhIRQpUqVxPoStm8Puu3Ztm1fsOix+rZtX7Do8eb28ePQo0c08+dDmzbh\nREfDqVPRxMQA+Ob5tn1euV9CAhvHjKHg+vWU3bcPNm/mfMWKnH/8ccrNnw/330/0ihVyvmlUPL2/\nvVZv/v6+aE9/4etgThhJicweBpYA181jJYFjwBNIgN8eV0nONHivKH5k3z748kuYPh1eegl69oRS\npQKtykPOnEleqyQkJCnoXrcu5MkTaIV+w9/Be3/OY9kBFEVcXvcgLrGqiFEpBNg8sx4lOQtmHL/J\nBCuq07tkJJ2bNkHbtpKVvUQJMTDDhvnXqKS5PePiJCtwnz4yeaZcOZg6VXx269bB3r0y9b9JE68Z\nFav8zf2NL11hk5FEZnchSc76ICPFbNh3PZ5E6gDEAgl4kORMURTvYhgymvaLLySW/c47EpjPmzfQ\nytxw9GjS6K2lS6UaWKNGMHiwGJQcOQKtMFNitamg6gpTFC+TkAAzZ8oclCtX4P33ZcZ8UL6Tb96E\nVauS3FsnTiSvVVKsWKAVBiX+doWpYVGUTMqtWzKadvBgmRnfqxe0aAFZgy3R04EDSfm3Vq6Ehx4S\nQ9KokWQItvSkGf+QkWMsmQar+F1Vp3exis4FC6IZNkwqM/7yi5T8/fNPePbZIDEqt27B3Lkca9lS\nRD75pNQqfvFFmQX/xx8SR6lWLeBGxSp/c3+jucIUJZNw9qzMP/n6a/myP2sWVK0aaFUmhiE5uCZO\nlID7/fcT8+CD8Omn0kPJRAkcMwJW+2upK0xR0si//8rM+AkTJCvJu+/KjPmgYP9++PlnMSjZs0uC\nsRdeAHOumuIdMlKuMEVRAsju3RI/mTMHunSBnTuhePFAq0K6Tr/8Isbk77+hQweZwv/oo9ozySAE\ng0c1w2EVv6vq9C7BonPdOmjZUooUli8vse/Bg5OMSkB0xsTAtGnQvLnML1mzBnr3luHCX38tQXgH\noxIs7ekOK2gMBNpjUZQMgGHAokUyZPiff8TdNWlSgCeXJyTI0OCoKJgxQwI6nTpJTyXDFGhRnGG1\nfqfGWBTFjvh4+PVXMSixsZK2vl27AJcI2bNHjMnPP0syx06dxN1VsmQARWVuNMaiKEqqxMTA+PGS\nx6toURk81bRpAIcLnzwpcZKoKFl//nkJ7lSqFCBBSiDRGIsPsIrfVXV6F3/ovHxZ4iVly8p7e9w4\nCVc8/bTnRsVrOq9dE39bkyZQsaLUIh40SIahffnlbRsVK/zdraAxEKhhURQLcOoUfPihGJRt22QS\n+ty5ULu2n4XEx8OSJZLquGRJ6aF06gTHjkkX6qmnAj5pUfGIscApJDmwjX5IcuAt5tLE7lgvYD9S\nPr5hajfXGIuiBDH//CNf/qdMkTDFO++IcfE727ZJ0H3SJMnH1bEjtG8Pd98dADFKWnESY6kDXEVK\nxz9s7uuL1MAa6nD5A8Ak4HGgBFL+5D4kYbBTNMaiKEHI9u3iVVq4EF55ReLhRYv6WcTRo2JIJk6E\nS5dk4uLixfDAA34WoviAVUi9LEecdTZaINnqY4FDwAGkjtY6VzdXV5gPsIrfVXV6F2/oXLUKmjWT\nHIuVK8PBg/DZZ941Km51XrkigZunnpIYyf79kgfmn3+kDrwfjYoV/u5W0JhGugPbgDFAiLmvOOIi\ns3EU6bm4RHssihJgEhJg/nwZMnzyJLz3nlRszJXLTwLi4mQSzMSJIqRuXekmPfOMH0Uo3iQ6Ojo9\nRu87pC4WwKfAEKCLi3PdxiQ0xqIoASI2VjKbDBokabI++EByefkl9m0YUiYyKkoCOGXLShD+ueeg\nUCE/CFD8iYt5LGEklY53xP7YB+a+gebP35F4zJ+unqc9FkXxM9evw9ix8NVXcM898rNhQz+lyTp0\nKCnpY2ysBOFXrw6irJRKACkGnDDXnyVpxNhsJHg/FHGBlQfWu7uRxlh8gFX8rqrTu6Sm88IFiZeU\nLStVdKdMkVLAjRr52KhcvAijR0tdk8ce49j69WLZ9u+Hfv2C1qhY4e9uBY0umAz8AVRASsd3BgYB\n25EYS12gh3nubmCq+XMBEEkqrjDtsSiKjzl+HIYNk3f5M8/AsmV+iIHfugULFoira/FiKd/7zjvQ\npAn7//iDEjVq+FiAEuR0cLJvrJvzPzcXj9AYi6L4iP37ZQ7Kr79K8cOePaF0aR8+0LFY1gMPSNyk\nTRsIDfXhg5VgR3OFKYrF2bRJAvLLl0NkJOzb5+N4uLNiWRs3arEsJWBojMUHWMXvqjq9h2HAsGHR\nNGwILVpAjRoy9aN/fx8ZlbNn4dtv5UG1a0scZcoUmUn50UdujYoV2hOsodMKGgOB9lgU5TbZvx+6\ndpViiP37ywT1HDl88KCYGMk8GRUFK1bITMrevSV+EtA8+YqSnLT43HIhIwFu+kiLJ2iMRQka4uPh\nf/+TCem9e8Mbb/hgDoqzYlkdO0KrVlosS/GYYIqxZAVaIqMHaprbWYB4YC3wMzCTVIadKUpG5K+/\noHNn6SisWyfVdr2Ks2JZ27drsSzFEriLsUQDjwJfAWWRyTN3m+tfIZkuV/hYnyWxit9VdaaduDip\nh1K7tri8li9PMiq3rfPkSan//uijkqsrNlZcX9u3S61hLxmVYGpPd1hBpxU0BgJ3PZYGOHd73USy\nWq4DcvpClKIEI7t2wcsvQ758sGGDzJq/ba5dg1mzpHeydq1E/gcNgnr1tK6JYlnS4nO7E7gfOAyc\n8Y2cVNEYi+J34uJkPsrQoTBgAHTrdpsz5ePjpasTFQWzZ0P16uLqatEC7rzTa7oVxUYwxViaA8OB\n88DHwLdIxbF7gPeBcb4WpyiBZscO6aUULChTQ8qUuY2bOSuWNWiQFstSMhzuYiwDkBKUrwDTgP8D\nqiPZLv/re2nWxSp+V9XpmthY+PRTqF8fXn1VCm6lZlSc6jx6VIIylSpB8+YS7V+8WKzU228HxKjo\n3917WEFjIHDXY4kH9pnrf5sLwGmkkpiiZEi2bpVeSrFisHkzlCqVxhtcuSIFVSZOlBu0aiXFsurU\ngaw6J1nJ+LjzuW0Hws1zlpvr2G1X8qUwF2iMRfEZt25J9uHvvpNOxksvpSGW4qxYVseOWixLCQqC\nKcaSH9hkrmexW1eUDMemTdJLKVNGeizFi3t4YWyslPIdMEC6OJ06wfDhWixLydS465eHIYH6exzW\nbYviAqv4XVUn3LwpqbWaNpWSwLNne2hU4uLEoFSoIJmEp0wheuBAeP31oDcq+nf3HlbQGAjc9Viq\npnLtZm8KURR/s3699FLuu08GbHkUR4+Pl2SP/fuLBRo3TgpoAehLRlEA9z63aCRdS25kBv52c38l\nYCOQWqWgsUAzJNjvWFP5HeBLoBAynBmgF1LFLB54E1jk5J4aY1Fum5gY6NsXxo+Xie7t2nkQS0lI\nkIB8v36SYsU2ZMwv9YQV5fYIphhLuPlzBtCVpPrHDwH9Pbj3T8AIYILD/lLIrP7DdvseANqZP0sA\nS4D7gAQPnqMoHrN2rfRSKlWSTClFiqRygWHAzJliiXLlgiFD/FBLWFGsjSdjHyuSZFQAdiIz8FNj\nFXDByf6hwHsO+1ogNZhjgUPAAeAJD54RlFjF75qZdF6/LpV5W7WSOPvUqakYFcOAuXMlb9cnn8hw\nsT//hMaNXRqVzNSe/sAKOq2gMRB4Uo9lO/AjMBHpSj0PbEvn81oAR0lyq9kojuQes3EU6bkoym2z\nahV06SI2YseOVGLrhiHDhvv0EWvUvz+0bKnzTxQlDXjSn88NvAbUMbdXAt8BMR5cGwbMQWIseZD5\nLw2Ay8A/wGPAOcRltg5JxQ9iyOYjbjh7NMaieMy1a/DhhzBtGowcKfbBLcuWiUE5d04MSps2alCU\nDEEwxVhs3EDcV0Nv81n3IobG1tspicyNqQYcQ2Iv2B075uwmERERhJllV0NCQqhSpQrh4eFAUrdU\nt3V7xQp4/vloHngAdu4Mp2BBN+dnzw69e3N9/34Ov/QS93/yCWTLFlS/j27r9u1uZyTCSB6fsecf\noKC5/gCwFciBzJE5iHPraliB5cuXB1qCR2REnVeuGMbrrxtGiRKGMWdOKievXWsYDRoYRliYYYwd\naxixsX7TGUhUp/ewgkbDMAz8XJDRl/38ycAfyOiuI8DLDsftf9HdwFTz5wIgEq1MqaSRpUvh4YfF\nBbZjBzyAM/t9AAAgAElEQVT9tIsTN22SevHPPSfurr17ZahYdk868IqSIRiLZKt39sX/HWREru2L\nfxjiudpiLiNTu7nVxkyaxldRkrh8WWbNz5sHP/wATZq4OHHbNhk2vGGDBF/+8x/IqbXqlIyPkxhL\nHeAqMh3Efp5hKWA0UAGZv3ie5LFyj/Ckx1LBfNBiJPi+HFjm6QMUxZcsWiS9lPh42LnThVHZtQva\ntpWhwuHhcOCApF5Ro6JkXtIyHSTNeGJYpiHpWz4G3rVbFBfYgmbBjpV1XrokHY6uXWH0aFkKFHA4\nae9eeP55mSH/xBNiUN5+G3Ln9pvOYER1eg8raEwDrqaDgMS+tyAZWWqndiNPnMqxyPBiRQkK5s+H\nV16RGMqOHZA/v8MJBw/KpMb586FHD/j+eylUryiZhOjo6LQavTzAh8h0EBs219lxxEV2AckhORN4\nELji6maexFj6ITXuZwA37fafd3q2b9EYSybmwgWxEytXwo8/SkckGYcPSw6vmTOhe3fpnaToxihK\n5sPFPJYwkmInDyOptK6bx2xTPp5A8j3asxwJ8LtMROxJjyUCGaHlWI5YU+crfmP2bHjtNUnJsn07\n5M1rd/DoUUm5MnWqnLRvnxSpVxTFU3YARe22/yEpeF8I6a3EA2WB8iRVFHaKJzGWMFLWYlGj4gar\n+F2toPPcOWjQIJqePWHSJKnwm2hUTpyAN9+UjJL580tMZcCAgBkVK7QnqE5vYgWNLkjLdJAnkYnt\nW5CY+yvARXc3d9dj+T9gKdAa53NKHNOtKIpXmTED3ngDataUkcJ33mkeOH0aBg2Cn36CiAjYsweK\nFnV3K0VRktMhleNl7dZnkMb3vbsYS3+gLzAO54bF0cL5A42xZALOnJEQyebNYjtq1TIPnDsHX34p\nQ8Cefx569UpDDWFFybz4O1eYTpBUgopp08S71bGjDOzKnRuJ2g8dKpkk27aVyY2lSwdaqqJYBn8b\nFncxlgjcu8pyEJheS9BjFb9rMOk8fVpsRp8+8Ntv0jHJHXsZPvmE2LAwOH4cNm6EUaOC1qgEU3u6\nQ3V6DytoDATuDEteYAMS5OmJ1GF5ARlmNhn4E0mpryjpxjBg8mSJv5crB1u2QPWHrsIXX8iOAwfY\n/O23MGYM3KNjRhTFCqTWNcoC1EJmWtq+Jh4GViMjCvztl1JXWAbi5EkZHbx/v8RSHn/wuri7vvwS\n6tWTvF73e1KsVFEUdwRbPRYDMSKr/aBFySQYBkycCP/9r6RkmTIuhpzjf4AWA6FGDViyRBKAKYpi\nSbQ8ng+wit81EDqPHYPmzaVTsmDmTQaU+I6cD5UXYzJvHkyfnsKoaHt6F9XpPaygMRCoYVH8gmGI\nu+uRR+DxKrFsjvyRqh0qwJw5MmFl9mw5qCiK5dHhxorPOXIEunWDMyfimNFqIqXHfQL33it15WvW\nDLQ8RcnwBNNwYxtvAwUQUWOQaf2NfClKyRgYhsxlfOyReF7J+zMbrj1A6aU/Sddl8WI1KoqSQfHE\nsHQGLgENkVKVnYCBvhRldazid/WlzsOHoXHDBA4MnMbhkEq0PPYtWUZ9B9HRULdumu6l7eldVKf3\nsILGQOBJdmNb96kZEAXs9J0cxeokJMD3owzWfjCLqDv7UrhEDrIMGAKNGkEWq3leFUVJD578p48D\niiNJySoD2ZB8/I/6TpZLNMYSxPzzt8EPLefz0sE+lCmdQO7Bn0g1LjUoihJQgjFXWFbgEeAgkir5\nLqAEzstX+ho1LEFIQrzBnDcXU+KHPpQpdI2CI/qTrVVLyKqDDhUlGAjG4H0NYC9iVDoBHyMxF8UF\nVvG7ekPnsYnL2VnwSSr/9BbFB/eg8LFtZGvTyqtGJTO1pz9Qnd7DChoDgSf//aOAa4gbrCdwAJjg\nS1FK8BO/YjVHytfn5ktdOf50N0pd3EnxHu20l6Ioikddoy2IK6wvUgP5R6TWcVUf6nKFusICzbp1\nXHunD5c27WdC6d60mf0i5Sp6MgZEUZRAEWy5wgCuAB8CHYE6SPD+Dl+KUoKQTZswevfhytod9Iv9\nmHIDI3jvzRzaQVEUJQWevBbaATeR+SwnkcD9l74UZXWs4nf1SOe2bdCyJbFNm/PV7qa0rbyfN7Z3\nI/Jt/xmVDNWeQYDq9B5W0BgIPHk1nAB+BkKAp4EYNMaS8dm1C9q2xWjcmCVx4ZSNP0C+D15nwbKc\nlC2b+uWKomRePPG5PYf0UFaY208C7wLTfCXKDRpj8TV790pN4MWLOdnxv7SNfp1cd93J6NEQFhZo\ncYqipIdgnMeyHXgKOG1uFwaWApV8JcoNalh8xcGD8OmnMG8e8d3fZkjsm3w5Kh+ffw7/+Y/OcVQU\nKxOM81iyAGfsts9hvazIfsUqftfo6GhJ6tW1K1SrBmFh7PjtAI/P/IhlG/KxaZMcCrRRsVR7WgDV\n6T2soDEQeGJYfgcWAhHAy8B8YIEPNSn+4MwZyg8bBlWrQpEi3Nq5j3704/9aFaB7d1iwAEqXTv02\niqJYkrHAKWCHk2PvAAlI0mEbvYD9wF9IQmK3ePJdNAvQCql7bwCrgN88uM4XqCvMG+zdC02bytKn\nD1uOFiYiAkqVgu+/hxIlAi1QURRv4sQVVge4igzEsi/ZWgoYDVRA8kGeBx4AJgGPI6OClwD3IcbH\nKZ7MYzGA6eaiWJ3Vq6F1a/j8c2527MKAAfDDD/DVV9CxY+DdXoqi+IVVQJiT/UOB94BZdvtaAJOB\nWOAQkn3lCWCdq5u7c4VdRSZHOlsueyg+UxK0ftdffoFnn4UJE9hbuwsVK0azYwds3QqdOgWvUQna\n9nRAdXoXK+i0gsY00AI4SsoEw8XN/TaOIj0Xl7jrseRNlzQl+DAMGDwYvvkGlizheOHKNKoJrVrB\nkCHBa1AURUkf0dHRaTV6eZAMKw3s9rl7M7iNSVjtlaIxlrQSFwfdu8Mff8C8eVzOX5Inn4R27aBX\nr0CLUxTFH7gYbhwGzEFiLA8jsZPr5rGSSG7IasigLUiqHPw7kjvyT1fP82VSDmejDj4FtgFbkbkw\npcz9YcANJOHlFmCkD3VlHq5ehRYtZI7KqlXEFi1JmzZQowZ88EGgxSmKEkTsAIoC95jLUSTR8Clg\nNtAeyGEeKw+sd3czXxqWn4DGDvsGI+n3qwAzEatn4wCSRfkRINKHunxOUPhdT5yQ2vJFi8K8eRj5\n8vOf/0CuXDBihLi/gkKnB6hO76I6vYcVNLpgMvAHMrrrCEm9Ehv2rqHdwFTz5wLk/ezWdeTLfOfO\nRh1csVvPC5z14fMzL7t2QbNmMmX+o48gSxb69JZRxsuWQXbNcq8omZ0OqRx3zAj4ubl4hCcxltaI\nb62o3fkGkN+Da8NI8uHZ+AypRHkdqI5UpgwDdiITcC4hVSpXO7mfxlhSY9kyaN8ehg6V8cPIcOIv\nv5QwS+HCAdanKIrfCcZcYQeRrMZ70nH/MFIaFhsfIJNwXkZ8d3cCFxC/3kzgQZL3cEANi3uiouCd\nd2RYcb16AMydK2lZVq2CcuUCrE9RlIAQjIW+TpI+o5Iak5D0MAC3zAWkOuVBJEC02fGiiIgIwsw0\nuyEhIVSpUoXw8HAgyd8Z6G3bPr89v25dGDCAmG+/ZfugQTxhGpXvvoumVy9YtCiccuVSXv/1118H\nZfsFvD3Tua3t6d1tK7Tn1q1befvtt4NGj7vtYKG1ufwP+AXxydn2tfLwHmEkHxVW3m69OxBlrhdC\nKlOC+PaOIvVfHDGswPLly/33sFu3DOPllw2jalXDOH48cfeBA4ZRrJhhzJ7t+lK/6rwNVKd3UZ3e\nwwoaDcMwSCXY7m3cdY3GkSQmCymFOY4icGQyUBcxGqeQEWBNEfdXPNIreQ1Jx98K+ARJGZAA9AHm\nObmn2UYKAJcvQ5s2kCMHTJkCeWVO65kzULMm/Pe/8MorAdaoKErACcYYS21SBtKd7fMHalhsHD0q\nSSRr1ZLxw+ZQr+vXoX59eOopGDAgwBoVRQkKgrEey3AP9ykm9r5sn7B1q8xy7NgRRo5MNCrx8dCh\nA1SoIDW7Aq7TS6hO76I6vYcVNAYCd8H7GkBNoAjQkyRrl4+keIjibxYuFIPy7bfw3HOJuw1DMrdc\nvw7Tpmn+L0VRAoe7109doB7wCjDKbv8VZAjxfh/qckXmdoX9+KNMeJw+HWrXTnZo4EAJs6xcCfk9\nmWGkKEqmIRhjLGFIDv5gIHMaFsOA3r1h8mSYP198XXZMnAgffywTIIsXD5BGRVGClmCMsVwHvkLm\nnCw3l2W+FGV1vOp3vXlTXF9LlsDatSmMytKlMidy/vy0GxWr+IdVp3dRnd7DChoDgSeG5WekznFZ\noB/Se9noO0lKIhcuQKNGcOOGpGopUiTZ4W3bJFg/bRo88ECANCqKojjgSddoM5JmZTtQydy3EXjM\nV6LckHlcYYcOyXDiRo2kbnC25OMljhyRuSpDhiSL4SuKoqQgGF1htlQrJ5GcYVWBUJ8pUmDjRrEa\nr7wCw4alMCoXL0KTJtCjhxoVRVGCD08MywAkvco7wH+BH4EevhRldW7L7zpnjliNkSPhrbdSHL55\nE1q2hAYNoGfP9D8GrOMfVp3eRXV6DytoDATu5rHkBl4FygElgDFAuB80ZV6+/Vamy8+dC9WqpTic\nkAAREZL6fsgQ/8tTFEXxBHc+t6mIG2wVkuPrEJDyK7R/yZgxloQEeP99mD0bFiyAso41doR334V1\n62DxYqkEqSiK4gnBlDb/fpLqqIwBNvheTibkxg148UU4eVImotx1l9PThg+XjsyaNWpUFEUJbtzF\nWOJcrCup4LHf9exZyRaZLZt0Q1wYlRkzYPBg6cwULBgAnQFGdXoX1ek9rKAxELgzLJWQ9C225WG7\n9cu+l5bBOXBARn7VqQOTJrnshqxZA6++KjF9s76ZoihKUGO1VIUZI8aydi20agX9+rktmPLXXxAe\nDhMmQMOGflOnKEoGI5hiLIovmD5duiDjx8sESBecPCmHBw5Uo6IoirXwZB6Lkkac+l0NQyY7vvWW\npL53Y1SuXIFmzeDll2V4sa+win9YdXoX1ek9rKAxEKhh8Qfx8WJQxoyRkV9Vq7o8NTZWZtM/+qhk\nLFYURfEBY5GS8Tvs9n0KbAO2AkuBUub+MOAGsMVcRqZ2c42x+Jpr1+D556UbMmMGhIS4PNUwoEsX\nOHUKZs1KLAypKIpyWziJsdQBrgITSJpWkg8ZnAXQHagM/AcxLHPszksV7bH4klOnoF49KFAAfv/d\nrVEB6N8fduyAX35Ro6Ioik9ZBVxw2HfFbj0vcDa9N1fD4gOio6NlSFeNGpL3a/x4yJHD7TVjxkBU\nlEyCzJvXjzotgOr0LqrTe1hBYxr5DPgXeAkYaLf/HsQNFg3UTnlZcvR7sQ8osG0btGsnQ7pefjnV\n8+fPl4rDK1dC0aJ+EKgoSoYmOjo6vUbvI3P5ABgGvAwcR+ItF5Ds9jOBB0new0mGxli8zeTJEqif\nNElm1afCxo3SqZk9Wzo4iqIo3sbFPJYwXMdOSiNVgx9ycmw5ku1+s6vnaY/FWxgGDBok6e6XLoWH\nU49z/f03NG8OP/6oRkVRlIBTHthvrrdAXF8AhZDeSjxSSbg88Le7G2mMxRvExcmkxylTYO1aos+d\nS/WSs2elp/LRR9CihR80OsEq/mHV6V1Up/ewgkYXTAb+ACoAR4DOwBfI8OOtSImUd8xzn0SGIW8B\npgGvABfd3Vx7LLfLlStJZRxXrYJ8+WD/freX3LghPZVnn4XXX/eDRkVRlOR0cLJvrItzZ5iLx2iM\n5XY4flymyD/2mLjA7rgj1Uvi46FtW8iTR3KAZdU+o6IoPiYYa94rzti5UwIjbdvCDz94ZFQMA95+\nGy5dgrFj1agoipIx0Vdbeli6FOrXhy++gA8/hCzJvwi48rt+9RWsWCET8FOZ1uIXrOIfVp3eRXV6\nDytoDAQaY0kr48fDe+/BtGlQt67Hl02eDCNGSKqwAgV8qE9RFCXAaIzF8ydLzpXx42VG4/33e3zp\n8uUyX3LZMnjI2ahwRVEUH6L1WIKRW7egWzfYtUuKdN19t8eX7tghRuWXX9SoKIqSOdAYS2pcuiS1\nU86fh+hoj4yKze969KgMGvvf/yQXZbBhFf+w6vQuqtN7WEFjIFDD4o5//4VataBiRfjtN7jzTo8v\ntdmj7t2hg7MR44qiKBkUjbG4YssWeOYZ6NEDevZMMfLLHbduQePG8OCDMHx4mi5VFEXxOv6OsVjt\nlecfw7JgAbz4Inz3HbRpk6ZLExLk0uvXZeBYtmw+0qgoiuIhGWmCZFpKXwL0QhKg/QU09KEu9/zw\ng6S6nzUrzUYFZFrLli3R/Pxz8BsVq/iHVad3UZ3ewwoaA4EvDctPQGOHfYORcpdVkJz+fc39DwDt\nzJ+NkZrK/o3/JCRAr17w5ZeS86tmzTTf4ttvJRTz+eeQO7cPNCqKolgAX3eNwnCd778XUAApKNML\nSAAGmcd+B/oB6xyu8Y0r7OZNiIiAw4elp1K4cJpvMXMmREbCmjVwzz3el6goipJeMsM8ls+ATsAN\n4AlzX3GSG5GjQAm/qDl/XtIMFy4sqVrS0dVYuxa6dpXQjBoVRVEyO4EwLPalL79GSl86w2nXJCIi\ngrCwMABCQkKoUqUK4eHhQJK/09PtdZMmUemDD8jz3HMweDDRK1em6fro6GiOHIF33w1nwgS4ejUa\nm8s1PDw8zXr8vf3111/fVvv5a9u2L1j0aHv6Z9sK7bl161befvvtoNHjbjsjEUby4L09pYGd5voH\n5mLjd6Cak2sMr/Hnn4ZRrJhhjBiR7lucPGkYZcsaxo8/Jt+/fPny29PmJ1Snd1Gd3sUKOq2g0TAM\nAxdf1H2Fv2Ms9qUvuyOusE5I0H6SuV0CWAKUI2VjmG10m8yaBf/5D4wZIxW30sHVqzKbvlkz6Nfv\n9iUpiqL4iowUY5kM1EXqJR9BRoA1RUphxgMHgdfMc3cDU82fcUAkvrKwI0ZIuvv58+Hxx9N1i7g4\nyf9VqRL07Zv6+YqiKJkJXw7p7YAE5XMg81XGAm2Q3ksVoDVw2u78z5FeSkVgodfVJCTIDPqRI2Xo\nVjqNimHI6K+EBBg1yvmsentfdjCjOr2L6vQuVtBpBY2BIHNkN75xAzp2hLNnpSBKaGi6bzVgAGza\nJAW7PCgaqSiKkunI+CldzpyBFi1kHPDYsZAzZ7ofPm4cfPKJ2KY0ZM5XFEUJKBkppUvg2b9fZtDX\nqwdRUbdlVBYuhA8+kLkqalQURVFck3ENy5o1UKeOlBH+7DPImv5fdfNm6NQJpk+HChVSP98qflfV\n6V1Up3exgk4raAwEGdOwTJsGLVuK76pr19u61aFDkj1/1CgpzaIoipIB8GmS4IwVYzEMGDIEvv4a\n5s6FKlVu62Hnz4sxiYyUgl2KoihWxEmMpQ5wFZhA0jzDfMAVc707kjD4PyTNM3ycpHmG9yH5HZ2S\ncUaFxcXBW2/BypWSvKtUqdSvcUNMjMydfPppNSqKomQ4ViET2O25YreeFzhrrrdA5iXGAoeAA8hk\ndsckwYlkDFfYtWuSSHLfPli9+raNSkKCjE4uVQoGDUr9fEes4ndVnd5FdXoXK+i0gsY08hnwLxAB\nfGHuK44kBraRapJg6/dYTp6UIMhDD0mRrtucXGIYMo/y7FkZCXYbMX9FUZSAEB0dnV6jd1tJgm1Y\nO8ayZw80bSoVH3v39kpx+aFDZbrL6tUQEnLbt1MURQk4LuaxhOG6XlZpYD7wEEkJggeaP39HUnT9\n6ep51v0+Hh0N4eHQvz/06eMVo/LLLzBsmMxVUaOiKEomo7zdegtgi7k+G2iPpOe6xzxvvbsbWdOw\n/PwzPPccTJoEL77olVuuWCFB+nnzbjtEYxm/q+r0LqrTu1hBpxU0umAy8AeSFPgI0BmJqexAhhuH\nA++Y59onCV6AB0mCrRdj+ewziaUsWyZxFS+wa5fYqcmTJWOxoihKBqeDk31j3Zz/ubl4hKViLD+A\n0fWRR2SOSvHiXrnn8eNQo4bYq44dvXJLRVGUoCIj1WPxOtdA5qnkzeuV+12+DE2awGuvqVFRFEXx\nFpaKsfQArxmVW7egdWuZWf/++165ZSJW8buqTu+iOr2LFXRaQWMgsJRh8RaGIZWJ8+SRgpJeGFCm\nKIqimFjtleqVmvcffQRLl0r8P08eL6hSFEUJYjTG4mNGjYKpU6VYlxoVRVEU75OpXGFz5kgFyN9/\nh8KFffccq/hdVad3UZ3exQo6raAxEGSaHsuff0LnzjB/Ptx7b6DVKIqiZFwyRYzlwAEpJjl6tKTB\nVxRFyUxozXsvc+aMzFXp31+NiqIoij/I0Ibl2jUxJu3bQ7du/nuuVfyuqtO7qE7vYgWdVtAYCDKs\nYYmLE4NSsaIE7BVFURT/kCFjLIYhaVr+/lvSiuXI4QdliqIoQYrOY/ECX3who8BWrFCjoiiK4m8y\nnCtswgTJqj9vHuTPHxgNVvG7qk7vojq9ixV0WkFjIMhQPZbFi+Hdd2H5cq9l1VcURVHSSIaJsWzd\nCg0bwvTpMmdFURRFEXQeSzr4918ZVvztt2pUFEVRAo3lDcuFCzIB8p13oG3bQKsRrOJ3VZ3eRXV6\nFyvotILGQGBpwxITAy1bQqNG0KNHoNUoiqIoYOEYS0ICdOggc1amTIGsljaRiqIovkPnsXjIu+/C\niROwaJEaFUVRlGDCl6/kscApYIfdvi+BPcA2YAZQwNwfBtwAtpjLSHc3/vprWLAAZs6EXLm8rNoL\nWMXvqjq9i+r0LlbQaQWNLvDZ+xl8a1h+Aho77FsEPAhUBvYBveyOHQAeMZdIVzf99Vf46isxLAUL\nelewt9i6dWugJXiE6vQuqtO7WEGnFTS6wCfvZxu+NCyrgAsO+xYDCeb6n0DJtN40MlLyf5Upc5vq\nfMjFixcDLcEjVKd3UZ3exQo6raDRBT55P9sIZHSiMzDfbvsepJsVDdR2ddHEiVClim+FKYqiZHLS\n9X62Eajg/UfALWCSuX0cKIVY0KrATKRLdsXxwoYN/aTwNjh06FCgJXiE6vQuqtO7WEGnFTSmg3S/\nn/1FGMmDQwARwBrAXdh9OfILOHIAMHTRRRdddEnTcoCUhOHd97PfCCO58MbALqCQw3mFgGzmelng\nKBDia3GKoiiZmDAs+H6ejHShbgFHEJ/dfuAwKYettQZ2mvs2Ac38LVZRFCUToe9nRVEURbkdnE3c\ncWQ4Yl23IeOqA0FqOsOBSyRZ/4/9IysFpRCf6C7kW8ebLs4LdJt6ojOcwLdpLmQo5lZgN/CFi/MC\n3Z6e6Awn8O0J4mbZAsxxcTzQbWnDnc5wgqMtDwHbTQ3rXZwTLO3pV+ogv6yrF3ZTkobBVQPW+UOU\nE1LTGQ7M9psa19wN2AZo5wX2Avc7nBMMbeqJznCCo03zmD+zI23lOPwyGNoTUtcZTnC0Z0/gZ5xr\nCZa2BPc6w13s9zf/AO6mjvulPYMxy5aziTv2NAfGm+t/IkGkor4W5YTUdEJwJPk8iXxrBbiKpGxw\nrK8ZDG3qiU4Ijja9bv7MgXyLPe9wPBjaE1LXCYFvz5LIy+5HF1qCpS1T04mb/f7GnQ6/tGcwGpbU\nKIEEm2wc5TZmiPoQA6iJdDfnAw8EVg4go0AeQT5Q9gRbm4bhXGewtGlWxAieQtx3ux2OB0t7pqYz\nGNpzGPAuSTO+HQmWtkxNZzC0pU3HEmAj0NXJcb+0pxUNC6S0yEZAVLhnMxI3qAyMQCYVBZK8wK/A\nW0iPwJFgaVN3OoOlTRMQt11J4EnEDeJIMLRnajoD3Z5PA6eReIC7b9mBbktPdAa6LW3UQr6UNQFe\nR1z2jvi8Pa1oWI4hf0AbJc19wcYVklwRC4A7cO/79CV3ANOBiTj/wAdLm6amM5jaFCRYOw94zGF/\nsLSnDVc6A92eNRHXzD/I8Nf6wASHc4KhLT3RGei2tHHC/HkG+A14wuF4MLRnwAjDs+B9dQIbzAvD\ntc6iJH0zeAIZrREIsiD/BMPcnBMMbeqJzmBo00IkTQ7LDawE/s/hnGBoT090BkN72qiL89FWwdCW\n9rjSGQxtmQfIZ67ficygd0yC5Zf2DMZCX5ORP14hxBfYF7H+AN8jjdIUSVFwDXg5ABohdZ1tgNeA\nOOSbTPsAaATpGnckaQgiwIdAaXM9WNrUE53B0KbFkOBnVnOJApYCr5jHg6U9PdEZDO1pj80lE2xt\n6YgzncHQlkWRXgrIu/1nJBV+sLenoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKoiiKkvmI\nR+aP7ETyS/UkacLXo8D/3FxbBujgU3XueRPJgxXl4+e8jUw2DAaeAd4311uSPBP0S8g8lvTwBlKe\nFqA/KSdVuiMCSWeSXpaSNMFPUZQMwBW79cLAYqCfh9eG47qWhj9wlQnZ2xOA/wHucnEskOmRxiFV\n/mwsR74MpIVsyBeJLaS/3V7i9gxLV+QLjaIoGYQrDtv3AGfN9XCSDEddkooZbUKSRq4DLpr73kJ6\nMCvN45uAGnb3iQamIcZgot3zHkdSUGxFshrfibzsvkQKFm0DujnRPQq4iczYfxvJgBAFrEZmHpcB\nlpnXLyEpT9I4pPTqWuCgqW080vP5yclz3rR7zlJz31XgK1NzLaC3qXUHMsvZRjQw0Py99pJUF+VB\nc98WU9+9SJqgv0wNe83foaHZNvvMdoKk3kEN4Bzwt3mf95C/5V9IYsRciJGJRjLe/o7UvrHpGgZs\nQF7otZGMEjbGkWSwDiFfNDaZbVDBSRvZG5ZmwB+IIR6HZ21dFNfFqRRFsSCOhgWk3kxhkhuW2SQZ\nijzIy98xf1JuIKe5Xh55cWHe5yLSu8iCvHhqIvVCDpL0LTuved9uwEfmvpzmfcKc6LQvbtTPPM/2\n/DlAJ3P9ZZJSXowDJpnrzYHLyIs+C/ICrpzKc0CyB7ex2w61W5+AZMUF6UF8aa43QXqDIC/h5831\n7LNdT4kAAAMiSURBVIgRCANiHbSMsdNp0x9B0kv8J6CV3bOXA1XN9TtIesEDtLO733LgG7vrPiB5\nj8H+vv8g2XJBUpeMJiU2w/Is8sWigN19PG3rv5EvFYqFCcZcYUpwswb5lvszMAPJjOqYhjsH8sKq\njMRuytsdWw8cN9e3Ij2jK0hW1k3mflu6/IbAwyS9vPMD5XCf4M9AjN9Nc7s6EoMA6SENtjvPZgx3\nIoXGdpnbu5AX/DY3zwH53abbbddHanbkQQzQTmCueWyG+XMzScbxD8RwljSPHzD3/+OgZYmdTtu1\njjj+DWzbFZCXuO0e2Uhqf4Bf7NZLIz09V9j/Dq2cHM+CtMFjQAOSlz3wtK1PIb3Kv9zoUIIcNSyK\nK8oiL84zDvsHIS/LZoiRaeTk2h6IoeiEvMhi7I7dtFuPRz6D7upBvEHSN3xPue6w7aqGxi3zZ4KD\nrgQ8+9+IIUl7LuBbpNd1DHHJ5bI713Z/2+8M4nZah/Rs5iPJAv9xosVepytdjm1o286CvLxrurju\nmsO2u7oozn4Hx2ceRL4sVCDpiwJ43tZZCM76SkoasGI9FsX3FEZiF84CsfciL6rBiMupAuLasB/N\nkx/5VgrwImJcXGEgsYRiJNULyWdesxCIJOnFcx9Jddw95Q+SMs2+gLho0ssV5Hdzhs2InENceW09\nuF9ZxJCMAGYhvbP0vFQdddlv70X+ntXN7TtwXd3wMEnxl/SQxbxHG8QVmJ4qikWRqoaKhVHDotjI\nTdJw48VIkLe/ecwg6YX3FhKc3oZ8C12ABHPjEdfWW0ig9iVzuwLJXSLOXpyxiO9/hHnNQiRG8iMS\n4N1sPvM7XH9TdrXdHYmtbEMMy1suznN3Dxs/IO2y1Mk5F5G4w07zHMeyys7u/Zx5/hbEXTUB59/Y\nnem0/5tMQVxwmxBjNQ75YrAZ+R9vg/Q0t5rPqoFzVpOyGJgr/c7ax7Z/L9LW00w9rn4Hx+27EcPs\n2ItSFEVRLIptuHGOAD2/G+JGVRRFUTIQkQSu+NNSxI2oKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqi\nKIqiKIqiKIqiZEz+H0C1ZRMhMDC/AAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0xb55925ac>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"L50 values by Cost 231 model\n",
"129.03 140.47 147.16 151.91 155.59 \n",
" \n",
"L50 values bu Okumura/Hata model\n",
"125.13 135.73 141.93 146.34 149.75 \n",
" \n",
"The results from the plot of two models shows that the calculated path loss with the COST 231 model is higher than the value obtained by the Okumura/Hata model.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8, Page 76"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"SNRmin=12;#in dB\n",
"n=3; #No of floors\n",
"Backgroundnoise=-115; #dBm\n",
"pt=100 #in dBm\n",
"\n",
"#Calculations\n",
"pt_db=10*math.log10(pt);\n",
"Sr=Backgroundnoise+SNRmin; #receiver sensitivity\n",
"Lpmax=pt_db-Sr;\n",
"#Refering table 3.4\n",
"Lp_d0=38; #ref path loss at the first meter(dB)\n",
"Lf=15+4*(n-1); #signal attenuation through n floors\n",
"y=3; #path loss exponent\n",
"X=10; #Shadowing effect(dB)\n",
"d=10**((Lpmax-Lp_d0-Lf-X)/30); #max allowable path loss\n",
"\n",
"#Result\n",
"print 'Coverage radius of an access point = %d m \\n'%(round(d))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Coverage radius of an access point = 54 m \n",
"\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9, Page 77"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"SSmean=-100; #signal strength(dBm)\n",
"Sr=-110; #receiver sensitivity(dBm)\n",
"sd=10; #standard deviation(dB)\n",
"\n",
"#Calculations\n",
"P_Smin=(0.5-0.5*math.erf((Sr-SSmean)/(math.sqrt(2)*sd)));\n",
"\n",
"#Result\n",
"print 'probability of exceeding signal beyond the receiver sensitivity is %.2f \\n'%(P_Smin)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"probability of exceeding signal beyond the receiver sensitivity is 0.84 \n",
"\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.10, Page 81"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"Lp=140; # path losses in dB \n",
"k=1.38*10**-23; # Boltzmann\u2019s constant (W/Kelvin-Hz)\n",
"k_db=10*math.log10(k);\n",
"f=900;#in MHz\n",
"Gt=8; #transmitting antenna gain(dB)\n",
"Gr=0; #receiver antenna gain(dB)\n",
"Ag=24;#gain of receiver ampli\ufb01er in dB \n",
"Fmargin=8;#Fade margin(dB)\n",
"Nf=6;#Noise figure(dB)\n",
"L0=20; #\u0002 other losses in dB\n",
"Lf=12; # antenna feed line loss in dB \n",
"T=24.6;#Temperature expressed in dB\n",
"R=39.8; #\u0002 data rate in dB \n",
"M=8; #overall link margin(dB)\n",
"Eb_No=10;#dB\n",
"\n",
"#Calculations\n",
"#From equation (3.54)\n",
"pt_db=M-Gt-Gr-Ag+ Nf + T+ k_db+ Lp+ Lf+ L0 + Fmargin+ R+ Eb_No;\n",
"\n",
"Pt=10**(pt_db/10); #dB into normal number\n",
"\n",
"#Result\n",
"print 'Total transmitted power is %d Watts \\n'%Pt"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total transmitted power is 6 Watts \n",
"\n"
]
}
],
"prompt_number": 25
}
],
"metadata": {}
}
]
}
|