1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
|
{
"metadata": {
"name": "",
"signature": "sha256:029905df97aa37359789733a28b442f75b82e79e7e96006449e39c092f0d4cca"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 17: Planning and Design of a Wireless Network"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.1, Page 597"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration \n",
"Susage=150.;#subscriber usage per month in mins\n",
"days=24;#days per month\n",
"busyhrs=6;#in a day\n",
"BW=4.8*10**3; #in kHz\n",
"Freqreuse=4./12;#Frequency reuse plan\n",
"chwidth=200; #in kHz\n",
"subscriber=50000;#Present subscriber count\n",
"Sgrowth=0.05;#Growth rate per year\n",
"Area=500; #in km\n",
"BTScapacity=30; #in Erlangs\n",
"N=4; #Initial installation design years\n",
" \n",
"#Calculations&Results\n",
"Erlangspersub=Susage/(days*busyhrs*60);\n",
"print 'Average busy-hour traf\ufb01c per subscriber is %.4f Erlangs'%Erlangspersub;\n",
"RFcarriers=BW/chwidth;\n",
"RFcarrier_percell=RFcarriers/((Freqreuse**-1)*4); #freq reuse factor of 4\n",
"\n",
"#Assuming 2 control channels per cell\n",
"CC=2;#control channels\n",
"TC_percell=2*RFcarriers/3-CC;\n",
"#Referring Erlang-B table in Appendix A\n",
"print \"Referring Erlang-B table in Appendix A,Traf\ufb01c capacity of a GSM cell at 2% GoS for 14 channels = 8.2 Erlangs \"\n",
"Tcapacity=8.2;# in Erlangs\n",
"print \"There are 3 cells per BTS\"\n",
"BTS=3;\n",
"Traffic_perBTS=Tcapacity*BTS;\n",
"print 'Traffic capacity per BTS is %.1f Erlangs'%Traffic_perBTS\n",
"print \"Therefore, Traffic per BTS is less than BTS capacity(30 Erlangs)\"\n",
"maxsubscriber=Traffic_perBTS/Erlangspersub;\n",
"initialsub=subscriber*(1+Sgrowth)**N;\n",
"BTS_perZone=initialsub/maxsubscriber;\n",
"print 'The required number of base stations per zone are %d'%(round(BTS_perZone));\n",
"cellRadius=(Area/(BTS_perZone*2.6))**0.5;\n",
"print 'The hexagonal cell radius is %.1f km'%cellRadius;"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Average busy-hour traf\ufb01c per subscriber is 0.0174 Erlangs\n",
"Referring Erlang-B table in Appendix A,Traf\ufb01c capacity of a GSM cell at 2% GoS for 14 channels = 8.2 Erlangs \n",
"There are 3 cells per BTS\n",
"Traffic capacity per BTS is 24.6 Erlangs\n",
"Therefore, Traffic per BTS is less than BTS capacity(30 Erlangs)\n",
"The required number of base stations per zone are 43\n",
"The hexagonal cell radius is 2.1 km\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.2, Page 598"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"usage=150.; #subscriber usage per month in mins\n",
"days=24;#Days in a month\n",
"BHrs=6;#Busy hours per day\n",
"BW=4.8; #in MHz\n",
"RFch=200; #in kHz\n",
"Psubscribers=50000;#present subscriber count\n",
"growth=0.05;#subscriber growth per year\n",
"rollover=4;#network roll over period\n",
"NPCS=5;#Number of packet calls per session \n",
"NPP=25;#Number of packets within a packet call \n",
"Tr=120;#Reading time between packet calls(sec)\n",
"NBP=480*8;#Packet size(in bits)\n",
"Tint=0.01;#Time interval between two packets(sec)\n",
"Ttot=3000;#Total packet service holding time\n",
"BH_PS=0.15;#Busy hour packet sessions per subscriber\n",
"Penetration=0.25;\n",
"datarate=48; #in kbps\n",
"PTT=10;#Packet transmission time(sec)\n",
"BTS=40;#NO of BTS sites\n",
"\n",
"#Calculations&Results\n",
"Bitstx_duringPTT=NPCS*NPP*NBP/1000; \n",
"PST=PTT+Tr*(NPCS-1)+Tint*(NPP-1);\n",
"PT_duringBH=BH_PS*Ttot/PST;\n",
"Bits_persub_persec=Bitstx_duringPTT*PT_duringBH/(60*60);\n",
"VoiceErlangs=usage/(days*BHrs*60);\n",
"Initial_subscribers=round(Psubscribers*(1+growth)**rollover);\n",
"Data_subscribers=Initial_subscribers*Penetration;\n",
"Totalvoice=Initial_subscribers*VoiceErlangs;\n",
"Voicetraffic_perBTS=Totalvoice/BTS;\n",
"print 'Voice Traffic per Cell(sector) is %.2f Erlangs'%(Voicetraffic_perBTS/3);\n",
"Totaldata=Data_subscribers*Bits_persub_persec;\n",
"Datathroughput_perBTS=Totaldata/BTS;\n",
"print 'Data throughput per Cell(sector) is %.2f kbps'%(Datathroughput_perBTS/3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Voice Traffic per Cell(sector) is 8.79 Erlangs\n",
"Data throughput per Cell(sector) is 15.50 kbps\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.3, Page 600"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Holdtime=120;#Average holding time during Busy Hours(in sec)\n",
"Tx=3;# No of transreceivers\n",
"TSsig=3;#No of TSs per cell for signaling\n",
"RLC=0.80;#Radio link control efficiency\n",
"Radioblocks=9000;#Total numbers of transmitted radio blocks\n",
"TSdata=3;#TSs allocated for data traf\ufb01c per cell\n",
"Datarate=15.5; #From eg 17.2\n",
"Voicetraffic=8.82; #From eg.17.2\n",
"Duration=0.02;#Duration of block in sec\n",
"\n",
"#Calculations&Results\n",
"DataEr=Radioblocks*Duration/Holdtime;\n",
"print 'Data Erlangs = %.1f'%DataEr;\n",
"TSuti=DataEr/TSsig;\n",
"print 'Time Slot(TS) utilization = %.1f'%TSuti;\n",
"Throughput=(Datarate/TSdata)*RLC;\n",
"TScap=Throughput/TSuti;\n",
"print 'TS capacity is %.2f kbps'%TScap;"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Data Erlangs = 1.5\n",
"Time Slot(TS) utilization = 0.5\n",
"TS capacity is 8.27 kbps\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.4, Page 602"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"Pt=36;#Base station transmitted power in dBm\n",
"Pms=24;#mobile station transmitted power in dBm\n",
"Nms=8;#mobile station noise figure in dB\n",
"Nbs=5;#Base station nise figure in dB\n",
"Ga=18;#Base station transmit and receive antenna gain in dBi\n",
"Gm=0;#Mobile antenna gain in dBi\n",
"SNR=12;# in dB\n",
"Lc_TX=5;#BS transmit antenna cable, connector, and \ufb01lter losses in dB\n",
"Lc_RX=2;#BS receiver antenna cable, connector, and \ufb01lter losses in dB\n",
"Bodyloss=3;# Body losses at mobile\n",
"fading=10.2;# in dB\n",
"ThermalNoise=-174;# in dBm/Hz\n",
"Gdiversity=5;#Antenna diversity gain at BS in dB\n",
"#Assuming standard value of RF channel as \n",
"RFch=200*10**3; #in Hz\n",
"\n",
"#Calculations\n",
"N=ThermalNoise+10*math.log10(RFch)+Nms;\n",
"Smin=N+SNR;\n",
"Smean=Smin+fading+Bodyloss;\n",
"Lp=Pt-Lc_TX+Ga-Smean;\n",
"N1=ThermalNoise+10*math.log10(RFch)+Nbs;\n",
"Smin=N1+SNR-Gdiversity;\n",
"Smean1=Smin+fading+Bodyloss;\n",
"Lp1=Pms-Smean1+Ga-Lc_RX;\n",
"R=10**((Lp1-133.2)/33.8);\n",
"\n",
"#Result\n",
"print 'Cell radius is %.1f km'%R;"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cell radius is 1.2 km\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.5, Page 608"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Ri=12.2*10**3;#Information rate in bps\n",
"Rc=3.84*10**6;#Chip rate in cps(chips per second)\n",
"Eb_Nt=4.; #in dB\n",
"Imargin=2.; #Interference margin(3 dB)\n",
"B=0.5;#Interference factor due to other cells\n",
"Vi=0.65;#Channel activity factor\n",
"\n",
"#Calculations&Results\n",
"Eb_Ntreqd=10**(Eb_Nt/10);\n",
"LF_peruser=(1+B)*(1./(1+(Rc/Ri)*(1./Eb_Ntreqd)*(1./Vi))); #M(no of users=1) in Eq 17.13\n",
"print 'Cell load factor per voice user is %.5f'%LF_peruser;\n",
"CellLoading=(Imargin-1)/Imargin;\n",
"VoiceUsers=CellLoading/LF_peruser;\n",
"print 'No of Voice Users are %d per cell'%VoiceUsers;\n",
"#From EQ 17.6 assuming Power control efficiency=1\n",
"Polecap=Rc/(Ri*Vi*(1+B)*Eb_Ntreqd);\n",
"print 'Pole Capacity is %d'%Polecap;"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cell load factor per voice user is 0.00774\n",
"No of Voice Users are 64 per cell\n",
"Pole Capacity is 128\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.6, Page 608"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Eb_Nt=1.; #in dB\n",
"cellLoading=0.5;#Required interference margin(3 dB)\n",
"B=0.5;#Interference factor due to other cells\n",
"Vi=1;#Channel activity factor\n",
"\n",
"#Calculations\n",
"Eb_Ntreqd=10**(Eb_Nt/10);\n",
"#Assuming standard value of chip rate as 3.84Mcps\n",
"Rc=3.84*10**6;#in cps(chips per second)\n",
"Throughput=(cellLoading*Rc)/(Eb_Ntreqd*(1+B));\n",
"\n",
"#Result\n",
"print 'Uplink Throughput is %d kbps'%(Throughput/1000);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Uplink Throughput is 1016 kbps\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.7, Page 610"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Ri=12.2*10**3;#Information rate in bps\n",
"Rc=3.84*10**6;# Chip rate in chips per second\n",
"Eb_Nt=4.; # in dB\n",
"Eb_Nt=10**(Eb_Nt/10);\n",
"B=0.5;#Average interference factor due to other cells\n",
"Zeta=0.6; # orthogonality factor\n",
"Imargin=2.;#Interference margin(3 dB)\n",
"Vi=0.65 #assuming Channel activity factor as 0.65\n",
"\n",
"#Calculations&Results\n",
"Loadfactor_peruser=(Zeta+B)*(1./((Rc/Ri)*(1./Eb_Nt)*(1./Vi)))\n",
"print 'Downlink cell load factor is %.4f'%Loadfactor_peruser;\n",
"cellLoading=(Imargin-1)/Imargin;\n",
"Voiceusers=cellLoading/Loadfactor_peruser;\n",
"print 'No of voice users per cell are %d'%Voiceusers;"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Downlink cell load factor is 0.0057\n",
"No of voice users per cell are 87\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.8, Page 610"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"N0=-174;#Noise density in dBm/Hz\n",
"Bc=1.25;#Channel bandwidth in mHz\n",
"Rc=1.2288;#Chip rate in Mcps\n",
"Nf=6; #Receiver Noise figure in dB\n",
"Pt=27; #Effective radiated power from mobile in dBm\n",
"Lct=0.5; #Transmitter cable and connector loss in dBm\n",
"Lbody=1.5;#Body loss in dB\n",
"Lcr=2; #Receiver cable and connector loss in dB\n",
"Mint=0; #Interference margin in dB\n",
"Mfading=2;#fast fadinf margin in dB\n",
"Lpent=8;#Penetration loss in dB\n",
"Gm=0;#Transmitter antennna gain in dBi\n",
"Gb=12;#Receiver antenna gain in dBi\n",
"Fm=8;#Fade margin in dB\n",
"Eb_Nt=7;# in dB\n",
"\n",
"#Calculations\n",
"Nth=N0+Nf;\n",
"S_Nt=Eb_Nt+10*math.log10((Rc*10**6)/(Bc*10**6));\n",
"Smin=S_Nt+10*math.log10(Rc*10**6)+Nth;\n",
"Lpmax=(Pt-Smin)+(Gb+Gm)-(Lbody+Lct+Lcr+Fm+Lpent)-Mint-Mfading;\n",
"\n",
"#Results\n",
"print 'Minimum signal power required is %.2f dBm'%Smin;\n",
"print 'Maximum allowable path loss is %.2f dB'%Lpmax;"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Minimum signal power required is -100.18 dBm\n",
"Maximum allowable path loss is 117.18 dB\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.9, Page 612"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Rc=3.84;#Chip rate in Mcps\n",
"Ri=16;#Data rate in kbps\n",
"UL=0.5;#UL loading factor\n",
"DL=0.9;#DL loading factor\n",
"Eb_NtU=4;#in dB\n",
"Eb_NtD=6;# in dB\n",
"Gm=0;#Mobile antenna gain in dBi\n",
"Gb=18;#Base station gain in dBi\n",
"\n",
"#Calculations\n",
"R=10**((139.65-138.5)/35.7);\n",
"print 'Cell Radius is %.3f km'%R;\n",
"Area=round(2.6*R**2);\n",
"\n",
"#Results\n",
"print 'Area covered by hexagonal cell is %d km**2'%Area;\n",
"print 'Number of BTSs required to cover an area of 2400 Km**2 are %d'%(2400/Area);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cell Radius is 1.077 km\n",
"Area covered by hexagonal cell is 3 km**2\n",
"Number of BTSs required to cover an area of 2400 Km**2 are 800\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.10, Page 614"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Rc=3.84;#chip rate in Mcps\n",
"N=3.;#Noise rise in dB\n",
"OF=0.8;#orthogonality factor\n",
"B=0.55;#Interference from other cells \n",
"Eb_N0=4.;#in dB\n",
"Sec_Eff=0.85;#Sector efficiency\n",
"Pwr_Eff=0.80;#Power control efficiency\n",
"Y=1.2; #Retransmit rate\n",
"X=10.; #10MB at 384Kbps\n",
"X1=2.; #2MB at 144Kbps\n",
"X2=1.; #1MB at 64Kbps\n",
"\n",
"#Calculations\n",
"#Assuming Voice activity=Vf=1\n",
"Vf=1;\n",
"AvgDR=Y*X*10**6*(1./3600)+Y*X1*10**6*(1./3600)+Y*X2*10**6*(1./3600);\n",
"CLoad=(N-1)/(N+1);\n",
"DLcap=(Rc*10**6*Pwr_Eff*Sec_Eff)/(((10**(Eb_N0/10))*(B+OF)*Vf));\n",
"Allowcap=CLoad*DLcap;\n",
"users=Allowcap/AvgDR;\n",
"\n",
"#Result\n",
"print 'NO of users that can be supported on the downlink of the WCDMA network are %d'%(round(users));"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"NO of users that can be supported on the downlink of the WCDMA network are 89\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.11, Page 616"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"P1=1./2;#relative frequency of packets for user class1 \n",
"P2=1./3;#relative frequency of packets for user class2\n",
"P3=1./6;#relative frequency of packets for user class3\n",
"R1=16; #data rate in kbps for P1\n",
"R2=64; #data rate in kbps for P2\n",
"R3=1024; #data rate in kbps for P3\n",
"S1=16;#number of slots assigned to the R1 user\n",
"S2=8;#number of slots assigned to the R2 user\n",
"S3=2;#number of slots assigned to the R3 user\n",
"\n",
"#Calculations\n",
"#Using Equation 17.20 from page no 616\n",
"Ravg=(P1*R1*S1+P2*R2*S2+P3*R3*S3)/(P1*S1+P2*S2+P3*S3);\n",
"# For equal latency, using Eq 17.18\n",
"Rav=1./(P1/R1+P2/R2+P3/R3);\n",
"# For Latency ratio=4, using Eq 17.19 from page no 616\n",
"PL=4;\n",
"C=(P1+P2+PL*P3)/(P1/R1+P2/R2+P3/R3);\n",
"\n",
"#Results\n",
"print 'The average throughput for equal access condition is %.1f kbps'%Ravg;\n",
"print 'The average throughput by considering equal latency is %.1f kbps'%Rav;\n",
"print 'The average throughput by considering latency ratio as 4 is %.2f kkbps'%C\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The average throughput for equal access condition is 58.2 kbps\n",
"The average throughput by considering equal latency is 27.3 kbps\n",
"The average throughput by considering latency ratio as 4 is 40.96 kkbps\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.12, Page 620"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Ec_Nt=-23.;#in dB\n",
"DRC=-1.5;#DRC gain with respect to pilot in dB\n",
"Tg=3.75; # Traf\ufb01c channel gain with respect to pilot in dB\n",
"B=0.85;#Interference factor due to other cells \n",
"\n",
"#Calculations\n",
"Mmax=(1./(1+10**(DRC/10)+10**(Tg/10)))*(1./((10**(Ec_Nt/10)*(1+B))));\n",
"#The sector loading can be expressed as a fraction of the pole capacity Mmax. This is typically 70% of the pole capacity. \n",
"M_allow=int(0.7*Mmax);\n",
"#From table 17.2 we get Traffic channel rate as 9.6kbps since we are given traffic channel gain with respect to pilot as 3.75 dB\n",
"Ri=9.6; #in kbps(see table 17.2)\n",
"Tput=Ri*M_allow;\n",
"\n",
"#Result\n",
"print 'Allowable reverse link throughput is %d kbps'%(round(Tput));"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Allowable reverse link throughput is 173 kbps\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.13, Page 623"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"Ptmax=5.5;#Maximum transmit power of DSCH in watts\n",
"Pbs=18;# Total base station power in watts\n",
"alpha=0.2;#downlink orthogonality factor \n",
"G=0.363;# geometry factor\n",
"SF=16; #Spreading Factor for DSCH;fixed at value of 16\n",
"\n",
"#Calculations\n",
"# Using equation no 17.27 given on page no 623\n",
"SINR=SF*(Ptmax/(Pbs*(1-alpha+(1/G))));\n",
"# In dB\n",
"SINR_db=10*math.log10(SINR);\n",
"\n",
"#Result\n",
"print 'The average SINR of HSDPA is %.4f dB(%.1fdB)'%(SINR,SINR_db);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The average SINR of HSDPA is 1.3753 dB(1.4dB)\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.14, Page 624"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Users=350;#no of users supported\n",
"ExpectedTraf=1.8; # From section 17.7 (in Kbps)\n",
"BHTraf=1.785;#Busy hour traffic in kbps\n",
"BTS=180;\n",
"\n",
"#Calculations\n",
"IubBW=(ExpectedTraf*Users*BHTraf)/1000; # in Mbps\n",
"TotalBW=BTS*IubBW;\n",
"\n",
"#Result\n",
"print 'Required total bandwidth of Iub Interface is %.2f Mbps'%TotalBW;"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Required total bandwidth of Iub Interface is 202.42 Mbps\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 17.15, Page 625"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"BTS=800.;#No of BTS sites\n",
"Sec=3;#No of sectors per BTS\n",
"freq_sec=2;#No of frequencies used per sector\n",
"cellsRNC=1152;#Maximum capacity of cellRNC\n",
"btsRNC=384;#One RNC can support btsRNC(BTSs)\n",
"VE=25;#Voice service(mErl/subscriber)\n",
"BRV=16;# bitrate Voice\n",
"CS1=10;#CS data service 1(mErl/subscriber)\n",
"BRC1=32;#bit rate for CS1 in kbps\n",
"CS2=5;#CS data service 2(mErl/subscriber)\n",
"BRC2=64;##bit rate for CS2 in kbps\n",
"PSdata=0.2;#PS data service(kbps per subscriber)\n",
"PSoverhead=0.15;\n",
"SHO=0.4;#40%\n",
"Totalsub=350000;#Total subsribers\n",
"Maxcap=196;#Maximum Iub capacity of tpRNC (in Mbps)\n",
"FR1=0.9;FR2=0.9;FR3=0.9;#Filler rates\n",
"\n",
"#Calculations&Results\n",
"RNCreqd=(BTS*Sec*freq_sec)/(cellsRNC*FR1);#from eqn 17.28\n",
"print 'using equation 17.28,Number of RNC required are %d'%(round(RNCreqd));\n",
"RNC_reqd=BTS/(btsRNC*FR2);#from eqn 17.29\n",
"print 'using equation 17.29,Number of RNC required are %d'%(round(RNC_reqd));\n",
"RNCrequired=((VE/1000*BRV+CS1/1000*BRC1+CS2/1000*BRC2+(PSdata/(1-PSoverhead)))*(1+SHO)*Totalsub)/(Maxcap*1000*FR3);#from eqn 17.30\n",
"print 'using equation 17.30,Number of RNC required are %d'%(round(RNCrequired));\n",
"print 'We select first value which is %d RNCs'%(round(RNCreqd));"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"using equation 17.28,Number of RNC required are 5\n",
"using equation 17.29,Number of RNC required are 2\n",
"using equation 17.30,Number of RNC required are 1\n",
"We select first value which is 5 RNCs\n"
]
}
],
"prompt_number": 15
}
],
"metadata": {}
}
]
}
|