1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
{
"metadata": {
"name": "",
"signature": "sha256:5a8dcdff9c441023f41d39cb4ab911bae195c143982b35aa0ceb85309af37715"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 12: Mobility Management in Wireless Networks"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 12.1, Page 374"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"P=10000; #Mobile density(mobiles/km**2)\n",
"R=500*10**-3; #km\n",
"V=10; #Average moving velocity of a mobile in Kmph\n",
"Nc=10.; #No of cells per LA\n",
"N_LA=5; #Number of LAs per MSC/VLR \n",
"\n",
"\n",
"#Calculations&Results\n",
"#Number of transactions and duration of each transaction to MSC/VLR per LU for different LU types are given in Table 12.1.(page no.374)\n",
"\n",
"\n",
"# L=length (km) of the cell exposed perimeter in an LA\n",
"L=6*R*(1./3+1./(2*math.sqrt(Nc)-3)); #Km\n",
"# lamdaLU=number of transactions processed by MSC/VLR in an LA perimeter of the jth cell per hour\n",
"LamdaLu=V*P*L/math.pi; #Lus per hour\n",
"\n",
"\n",
"# case(1)\n",
"print \"Case-1\"\n",
"R1_LU=LamdaLu/3600*(1*600./1000); #resource occupancy from Table 12.1\n",
"print 'The resource occupancy in the jth cell due to MS LUs is %.1f Erlangs'%R1_LU;\n",
"\n",
" \n",
"#case(2)\n",
"print \"\\nCase-2\"\n",
"R2_LU=LamdaLu/3600*(0.8*3500/1000+0.2*4000/1000); #from Table 12.1\n",
"print 'The resource occupancy in the jth cell due to MS LUs is %.2f Erlangs'%R2_LU;\n",
"Np=6*math.sqrt(Nc/3)-3;#Number of cells located on perimeter of an LA\n",
"print 'Number of cells where inter-VLR LUs occur will be: %d'%(round(0.5*Np*4));\n",
"print 'Number of cells where intra-VLR LUs occur will be: %d'%(4*Nc-16);\n",
"TNLU=LamdaLu*(2*24+16*(0.8*14+0.2*16)); #from table 12.1\n",
"print 'The MSC/VLR transaction load using the \ufb02uid \ufb02ow model is %.2e transactions at peak hour'%TNLU;"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case-1\n",
"The resource occupancy in the jth cell due to MS LUs is 10.1 Erlangs\n",
"\n",
"Case-2\n",
"The resource occupancy in the jth cell due to MS LUs is 60.55 Erlangs\n",
"Number of cells where inter-VLR LUs occur will be: 16\n",
"Number of cells where intra-VLR LUs occur will be: 24\n",
"The MSC/VLR transaction load using the \ufb02uid \ufb02ow model is 1.69e+07 transactions at peak hour\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|