1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
|
{
"metadata": {
"name": "",
"signature": "sha256:0ac87828ad067f0685215c3ea3f783dc1f30af884f5edc144a109aec1b63e4e7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3 : Wastewater Systems"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1 Page No : 3-12"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\n",
"#initialisation of variables\n",
"v = 2.5\t#fps\n",
"c = 0.013\t#gpd\n",
"p = 300\t#gpd\n",
"d = 50\t#per care\n",
"m = 5.20\t#ft\n",
"a = 1000\t#ft\n",
"\t\n",
"#CALCULATIONS\n",
"C = (math.pi*64)/(4*144)*v*646000\t#gpd\n",
"M = m/a\t#ft\n",
"P = C/p\n",
"A = P/d\t#acres\n",
"\t\n",
"#RESULTS\n",
"print 'the acres will it drain if the population density = %.1f acres'%(A)\n",
"\n",
"# rounding off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the acres will it drain if the population density = 37.6 acres\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2 Page No : 3-14"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\n",
"#initialisation of variables\n",
"a = 37.4\t#acres\n",
"r = 2.\t#in\n",
"p = 30.\t#min\n",
"v = 3\t#fps\n",
"r1 = 0.6\t#in\n",
"h = 1.0\t#cfs\n",
"p1 = 50\t#percent\n",
"q = 646000\t#gpd\n",
"\t\n",
"#CALCULATIONS\n",
"R = r*r1*a\t#cfs\n",
"A = R/v\t#sq ft\n",
"D = 12*math.sqrt(4*A/math.pi)\t#in\n",
"P = r*r1*q/p1\t#gpcd\n",
"\t\n",
"#RESULTS\n",
"print 'the per capita storm runoff for a population density = %.0f gpcd'%(round(P,-1))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the per capita storm runoff for a population density = 15500 gpcd\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3 Page No : 3-16"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\n",
"#initialisation of variables\n",
"w = 1.0\t#cfs\n",
"w1 = 3.0\t#cfs\n",
"w2 = 45.0\t#cfs\n",
"v = 3.0\t#fps\n",
"h = 144\t#ft\n",
"D = 12*math.sqrt(4*w/(math.pi*w1))\t#in\n",
"d1 = 1.95\t#cfs\n",
"D1 = 12*math.sqrt(4*d1)/(math.pi*v)\t#in\n",
"d2 = 41.6\t#cfs\n",
"D2 = 12*math.sqrt(4*d2)/(math.pi*w1)\t#ins\n",
"\t\n",
"#CALCULATIONS\n",
"C = math.pi*(D)**2*3/(4*h)\t#cfs\n",
"C1 = math.pi*(1./4)*3\t#cfs\n",
"V = (d2*4)/(math.pi*4**2)\t#fps\n",
"\t\n",
"#RESULTS\n",
"print 'The minimum dry-weather flow = %.2f cfs'%(C)\n",
"print 'The maximum dry-weather flow in excess actual capacity = %.1f cfs'%(C1)\n",
"print 'the storm flow in axcess of maximum dry-weather flow = %.1f fps'%(V)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum dry-weather flow = 1.00 cfs\n",
"The maximum dry-weather flow in excess actual capacity = 2.4 cfs\n",
"the storm flow in axcess of maximum dry-weather flow = 3.3 fps\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4 Page No : 3-26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\n",
"#initialisation of variables\n",
"t = 0.8\t#mgd\n",
"d = 8000.\t#people\n",
"a = 2.\t#hr\n",
"v = 800000.\t#ft\n",
"h = 10.\t#ft\n",
"a1 = 4.\t#in\n",
"d1 = 1.\t#sq ft per capita\n",
"a3 = 3.\t#mgad\n",
"\t\n",
"#CALCULATIONS\n",
"V = v*(a/24)/a\t#gal\n",
"S = V/h\t#sq ft\n",
"S1 = (v/h)/S\t#gpd per sq ft\n",
"V1 = a*d/h\t#cu ft\n",
"D = d/S\t#ft\n",
"E = d1*d/a1\t#sq ft\n",
"A = t/a3\t#acre\n",
"\t\n",
"#RESULTS\n",
"print 'the capacity of the components of a small trickling-filter = %.2f acre'%(A)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the capacity of the components of a small trickling-filter = 0.27 acre\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5 Page No : 3-28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\n",
"#initialisation of variables\n",
"w = 2000.\t#sq miles\n",
"r = 0.1 \t#cfs\n",
"d = 80000.\t#ft\n",
"p = 100.\t#gpd\n",
"p1 = 80.\t#ft\n",
"p2 = 340.\t#percent\n",
"h = 646000.\t#ft\n",
"\t\n",
"#CALCULATIONS\n",
"L = r*w\t#cfs\n",
"R = 6*p1/1.4\t#cfs\n",
"P = p1*(p2-L)/p2\t#percent\n",
"D = (d*p)\t#gpd\n",
"D1 = (L*h)\t#gpd\n",
"\t\n",
"#RESULTS\n",
"print \"Low-water flow = %d cfs\"%(0.1*w)\n",
"print \"Required flow for disposal of domestic sewage if it i left untreated = %d cfs\"%(round(6*80/1.4,-1))\n",
"print 'the percent of removal of pollutional load needed = %.0f percent'%(P)\n",
"print \"Dilution ratio = %d : %d\"%((d*p)/(d*p),(200*h)/(d*p))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Low-water flow = 200 cfs\n",
"Required flow for disposal of domestic sewage if it i left untreated = 340 cfs\n",
"the percent of removal of pollutional load needed = 33 percent\n",
"Dilution ratio = 1 : 16\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6 Page No : 3-28"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\n",
"#initialisation of variables\n",
"p = 10000.\t#people\n",
"p1 = 4. \t#ft\n",
"w = 10. \t#in\n",
"s = 80. \t#gpcd\n",
"h = 43560.\t#ft\n",
"p2 = 20. \t#ft\n",
"\t\n",
"#CALCULATIONS\n",
"R = ((w/12)*7.5*h)/365\t#gpad\n",
"A = p*s/R\t#acres\n",
"A1 = 1.7\t#sq miles\n",
"P = p/500\t#acres\n",
"D = p2*h*4*7.48/(p*s)\t#days\n",
"\t\n",
"#RESULTS\n",
"print 'the detention period in ponds = %.0f days'%(D)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the detention period in ponds = 33 days\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7 Page No : 3-31"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\n",
"#initialisation of variables\n",
"p = 100000.\t#people\n",
"a = 75. \t#$\n",
"a2 = 47. \t#in\n",
"b = 10. \t#in\n",
"\t\n",
"#CALCULATIONS\n",
"P = a*p\t#people\n",
"S = ((a2)*(b**5))/(b)**(1./4)\t#$\n",
"\t\n",
"#RESULTS\n",
"print 'the money is inversed in the sanitary sewerage system = %.0f $'%(round(S,-5))\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the money is inversed in the sanitary sewerage system = 2600000 $\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|