1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
{
"metadata": {
"name": "",
"signature": "sha256:d97ef885e741db81adc7f9703c96d41639df30eb154ebfc4a587f4f7ba56c3d8"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11 : Surface-Water Collection"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.1 Page No : 11-20"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\n",
"#initialisation of variables\n",
"s = 20.\t#mph\n",
"t = 90.\t#min\n",
"w = 1.31\t#ft\n",
"h = 7.5\t#miles\n",
"h1 = 0.22\t#ft\n",
"t1 = 1100.\t#min\n",
"t2 = 6.0\t#min\n",
"p = 32.2\t#ft\n",
"l = 5.12\t#length\n",
"l1 = 2.8\t#length\n",
"p1 = 1400.\t#ft\n",
"d = 73.\t#depth\n",
"h3 = 2.06\t#ft\n",
"e = 173.0\t#ft\n",
"hi = 0.2\t#ft\n",
"\t\n",
"#CALCULATIONS\n",
"W = s*w\t#mph\n",
"hs = h1*((W)**2/p)**0.53*h**0.47\t#ft\n",
"Ts = t2*(W/p)**0.44*(h/p)**0.28\t#sec\n",
"Td = t1*h/(p*Ts)\t#min\n",
"Ls = l1/(l*(Ts)**2)\t#ft\n",
"D = d/(l*(Ts)**2)\t#ft\n",
"H = (W)**2*(h*(1/(p1*d)))\t#ft\n",
"hr = h3*l1\t#ft\n",
"M = e+hi+hr\t#ft\n",
"\t\n",
"#RESULTS\n",
"print 'the overwater wind speed = %.0f mph'%(W)\n",
"print 'the significant wave height = %.1f ft'%(hs)\n",
"print 'the significant wave period = %.1f sec'%(Ts)\n",
"print 'the minimum wind duration required to reach the significant wave height = %.0f min'%(Td)\n",
"print 'the significant wave lenght adn steepness = %.3f ft'%(Ls)\n",
"print 'the reservoir depth ratio = %.1f ft'%(D)\n",
"print 'the wind tide or set up = % f ft'%(H)\n",
"print 'the run up = %.1f ft'%(hr)\n",
"print 'the maximum elevation reached by the waves = %.1f ft'%(M)\n",
"\n",
"# rounding off error. please check."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the overwater wind speed = 26 mph\n",
"the significant wave height = 2.9 ft\n",
"the significant wave period = 3.6 sec\n",
"the minimum wind duration required to reach the significant wave height = 70 min\n",
"the significant wave lenght adn steepness = 0.041 ft\n",
"the reservoir depth ratio = 1.1 ft\n",
"the wind tide or set up = 0.050375 ft\n",
"the run up = 5.8 ft\n",
"the maximum elevation reached by the waves = 179.0 ft\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2 Page No : 11-23"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\n",
"#initialisation of variables\n",
"g = 264\t#quartz\n",
"p = 0.39\t#percent\n",
"\t\n",
"#CALCULATIONS\n",
"S = (1-p)*(g-1)\t#in\n",
"\t\n",
"#RESULTS\n",
"print 'the hydraulic gradient and seepage velocity = %.2f in'%(S)\n",
"#incorrect answer in textbook"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the hydraulic gradient and seepage velocity = 160.43 in\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3 Page No : 11-26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\n",
"#initialisation of variables\n",
"w = 40\t#ft\n",
"k = 2*10**-3\t#cm/sec\n",
"p = 3.28*10**-3\t#cfs\n",
"h = 6.47*10**5\t#gpd\n",
"p1 = 0.433\t#ft\n",
"m = 9\t#ft\n",
"delh = w/(18*9)\t#in\n",
"k1 = 4.94*10**-4\t#cm/sec\n",
"\t\n",
"#CALCULATIONS\n",
"Q = k*p*w*(9./18)\t#cfs\n",
"Q1 = Q*h\t#gpd/ft width\n",
"P = (1-8./18)*w*p1\t#Psig\n",
"H = k1/k\t#in\n",
"\t\n",
"#RESULTS\n",
"print 'the seepage through each foot width of the foundation = %.0f gpd/ft/ width'%(Q1*10)\n",
"print 'the excess hydrostatic pressure on the upstream side of the bottom of the sheet pilling = %.2f Psig'%(P)\n",
"print 'the maximum hydraulic gradient and its relations to the coeeficent = %.2f in'%(H)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the seepage through each foot width of the foundation = 849 gpd/ft/ width\n",
"the excess hydrostatic pressure on the upstream side of the bottom of the sheet pilling = 9.62 Psig\n",
"the maximum hydraulic gradient and its relations to the coeeficent = 0.25 in\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4 Page No : 11-13"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\n",
"#initialisation of variables\n",
"d = 120\t#ft\n",
"w = 16\t#ft\n",
"d1 = 120/0.8\t#ft\n",
"p = 60*0.8\t#ft\n",
"h = 2\t#ft\n",
"v = 18.74*0.8\t#ft\n",
"s = 95.23\t#ft\n",
"s1 = 0.8\t#ft\n",
"\t\n",
"#CALCULATIONS\n",
"W = d-h*p\t#ft\n",
"S = s*s1\t#ft\n",
"\t\n",
"#RESULTS\n",
"print 'in succession from the intersection of the upstream slop = %.2f ft'%(S)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"in succession from the intersection of the upstream slop = 76.18 ft\n"
]
}
],
"prompt_number": 12
}
],
"metadata": {}
}
]
}
|